Добавил:
kostikboritski@gmail.com Выполнение курсовых, РГР технических предметов Механического факультета. Так же чертежи по инженерной графике для МФ, УПП. Писать на почту. Дипломы по кафедре Вагоны Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
химия / БИЛЕТЫ ПО ХИМИИ(1-40) 2.doc
Скачиваний:
136
Добавлен:
14.08.2017
Размер:
247.3 Кб
Скачать

30.Электролиз расплавов растворов. Правила электролиза с инертным анодом. Электролиз раствора с растворимым анодом.

Электролизом называется совокупность процессов, происходящих при прохождении постоянного электри­ческого тока через электрохимическую систему, состоящую из двух электродов и расплава или раствора электролита.

Примером электролиза может служить электролиз расплава хлорида магния. При прохождении тока через расплав MgCl катионы магния под действием электрического поля движутся к отрицательному электроду. Здесь, взаимодействуя с приходящими по внешней цепи электронами, они восстанавливаются Mg2+ + 2е~ = Mg Анионы хлора перемещаются к положительному электроду и, отдавая избыточные электроны, окисляются. При этом первичным процессом является собственно электрохимическая стадия — окис­ление ионов хлора 2Сl = 2Сl + 2e а вторичным — связывание образующихся атомов хлора в моле­кулы: 2С1 = С12 Складывая уравнения процессов, протекающих у электродов, получим суммарное уравнение окислительно-восстановительной ре­акции, происходящей при электролизе расплава MgCl:

Mg2+ + 2Сl= Mg + Cl2 Эта реакция не может протекать самопроизвольно; энергия, не­обходимая для ее осуществления, поступает от внешнего источника тока.

На инертном аноде при электролизе водных растворов щелочей, кислородсодержащих кислот и их солей, а также фтороводорода и фторидов происходит электрохимическое окисление воды с выделением кислорода. В зависимости от рН раствора этот процесс протекает по-разному и может быть записан различными уравнениями.

В случае активного анода число конкурирующих окис­лительных процессов возрастает до трех: электрохимическое окис­ление воды с выделением кислорода, разряд аниона (т. е. его окисление) и электрохимическое окисление металла анода (так называемое анодное растворение металла).

31.Основные законы электролиза. Применение электролиза. Гальваносте­гия и гальванопластика. Электрохимическая обработка металлов. Ак­кумуляторы.

1. Масса образующегося при электролизе вещества пропорцио­нальна количеству прошедшего через раствор электричества.

Этот закон вытекает из сущности электролиза. Как уже гово­рилось, в месте соприкосновения металла с раствором происходит электрохимический процесс—взаимодействие ионов или молекул электролита с электронами металла, так что электролитическое образование вещества является результатом этого процесса. Ясно, что количество вещества, получающегося у электрода, всегда будет пропорционально числу прошедших по цепи электронов, т. е. коли­честву электричества.

2. При электролизе различных химических соединений равные количества электричества приводят к электрохимическому превра­щению эквивалентных количеств веществ.

Важнейшее применение электролиз находит в металлургической и химической промышлен­ности и в гальванотехнике.

В металлургической промышленности электролизом расплав­ленных соединений и водных растворов получают металлы, а так же производят электролитическое рафинирование — очистку ме­таллов от вредных примесей и извлечение ценных компонентов.

К гальванотехнике относятся гальваностегия и гальванопласти­ка. Процессы гальваностегии представляют собой нанесение путем электролиза на поверхность металлических изделий слоев других металлов для предохранения этих изделий от коррозии, для придания их поверхности твердости, а также в декоративных целях. Из многочисленных применяемых в технике гальванотехни­ческих процессов важнейшими являются хромирование, цинкова­ние и никелирование.

Гальванопластикой называются процессы получения точных металлических копий с рельефных предметов электроосаж­дением металла. Путем гальванопластики изготовляют матрицы для прессования различных изделий (граммофонных пластинок, пуговиц и др.), матрицы для тиснения кожи и бумаги, печатные радиотехнические схемы, типографские клише.

32.Коррозия металлов. Классификация коррозионных процессов по меха­низму протекания и по характеру коррозионных поражений. Химиче­ская и электрохимическая коррозия. Коррозия под действием блуж­дающих токов.

Металлические материалы — металлы и сплавы на основе металлов, — приходя в соприкосновение с ок­ружающей их средой (газообразной или жидкой), подвергаются с той или иной скоростью разрушению. Причина этого разрушения лежит в химическом взаимодействии: металлы вступают в окис­лительно-восстановительные реакции с веществами, находящимися в окружающей среде, и окисляются. Самопроизвольное разрушение металлических материалов, про­исходящее под химическим воздействием окружающей среды, на­зывается коррозией (от латинского «corrodere» — разъедать).

Атмосферная к о р р о з и я — коррозия во влажном воз­духе при обычных температурах. Поверхность металла, находяще­гося во влажном воздухе, бывает покрыта пленкой воды, содержа­щей различные газы, и в первую очередь — кислород. Скорость атмосферной коррозии зависит от условий. В частности, на нее влияет влажность воздуха и содержание в нем газов, образующих с водою кислоты (СО2, SO2). Большое значение имеет также состояние поверхности металла: скорость атмосферной коррозии резко возрастает при наличии на поверхности шероховатостей, микрощелей, пор, зазоров и других мест, облегчающих конденса­цию влаги.

Коррозия в грунте* приводит к разрушению проложен­ных под землей трубопроводов, оболочек кабелей, деталей строи­тельных сооружений. Металл в этих условиях соприкасается с влагой грунта, содержащей растворенный воздух. В зависимости от состава грунтовых вод, а также от структуры и минералогиче­ского состава грунта, скорость этого вида коррозии может быть весьма различной.

Коррозия при неравномерной аэрации** — наблю­дается в тех случаях, когда деталь или конструкция находится в растворе, но доступ растворенного кислорода к различным ее частям неодинаков. При этом те части металла, доступ кислорода к которым минимален, корродируют значительно сильнее тех ча­стей, доступ кислорода к которым больше. Такое неравномерное распределение коррозии объясняется следующим образом. При восстановлении кислорода О2 + 4Н+ + 4е~ = 2Н2О расходуются ионы водорода и раствор, следовательно, несколько подщелачивается. Металлы, и в частности железо, при подщелачивании раствора легче переходят в пассивное состояние. Поэтому аэрируемые участки металла переходят в пассивное состояние и скорость коррозии на них снижается. На неаэрируемых участках не происходит пассивирования — здесь протекает процесс окисле­ния металла, приводящий к переходу его ионов в раствор:

М = Мг+ + ге~ Таким образом, при неравномерной аэрации металла осуще­ствляется пространственное разделение окислительно-восстанови­тельной реакции: восстановление кислорода протекает на более аэрируемых участках, а окисление металла — на менее аэрируе­мых участках поверхности. Локализация процесса окисления при­водит к местной коррози и — интенсивному разрушению ме­талла на отдельных участках. Местная коррозия приводит к появ­лению на поверхности металла углублений («язв»), которые со временем могут превращаться в сквозные отверстия. Иногда раз­витие язв трудно обнаружить, например, из-за остатков окалины на поверхности металла. Этот вид коррозии особенно опасен для обшивки судов, для промышленной химической аппаратуры и в ряде других случаев.

Контактная коррозия может протекать, когда два ме­талла с различными потенциалами соприкасаются друг с другом либо в водной среде, либо при наличии влаги, конденсирующейся из воздуха. Так же, как и в рассмотренном выше случае значи­тельных включений, металлы оказывают друг на друга поляризую­щее действие; металл с меньшим потенциалом поляризуется анодно, и скорость его коррозии вблизи места контакта резко воз­растает.