
- •Глава XX. Алюминий и сплавы на его основе
- •1. Алюминий
- •2. Классификация алюминиевых сплавов
- •4. Деформируемые алюминиевые сплавы, упрочняемые термической обработкой
- •5. Деформируемые алюминиевые сплавы, не упрочняемые термической обработкой
- •6. Литейные алюминиевые сплавы
- •14. Коррозионно-стойкие
- •2. Сплавы на основе меди
- •2. Термопластичные пластмассы
- •70 15 Время, мин
- •1. Общие сведения, состав и классификация
- •4. Органоволокниты
- •Глава XXIV. Композиционные материалы с металлической матрицей
- •3. Термореактивные пластмассы
- •16 Лгх.Твв 465
16 Лгх.Твв 465
вагонов, лодок, детали текстильных машин, матрицы для вытяжки и штамповки.
Зависимость прочности фенопластов от температуры дана на рис. 216.
Асботекстолит содержит 38—43 % связующего, остальное асбестовая ткань. Асботекстолит является конструкционным, фрикционным и термоизоляционным материалом. Наиболее высокой теплостойкостью обладает материал на кремнийорганическом связующем (300 °С), а механическая прочность выше у фенольных асбопластиков. Из асботекстолита делают лопатки ротационных бензонасосов, фрикционные диски, тормозные колодки (без смазывания коэффициент трения /. = 0,3ч-0,38, со смазыванием маслом / = 0,05-^0,07).
Асботекстолит выдерживает кратковременно высокие температуры и поэтому применяется в качестве теплозащитного и теплоизоляционного материала (в течение 1—4 ч выдерживает температуру 250—500 СС и кратковременно 3000 °С и выше).
В стеклотекстолитах применяют в качестве наполнителя стеклянные ткани. На основе нетканых ориентированных материалов (нити в которых не перегибаются) получают стеклотекстолиты (типа ВПР-10), имеющие те же показатели, что и у стеклотексто-литов на основе стеклотканей, а себестоимость их ниже на 20 %.
Стеклотекстолит на фенолоформальдегидном связующем (типа КАСТ) недостаточно вибропрочен, но зато по сравнению с обычным текстолитом он более теплостоек и имеет более высокие электроизоляционные свойства. Стеклотекстолиты на основе крем-нийорганических смол (СТК, СК-9Ф, СК>9А) имеют относительно невысокую механическую прочность, но отличаются высокой теплостойкостью и морозостойкостью, обладают стойкостью к окислителям и другим химически активным реагентам, не вызывают коррозии металлов. Эпоксидные связующие (ЭД-8, ЭД-Ю) обеспечивают стеклотекстолитам наиболее высокие механические свойства и позволяют изготовлять из них крупногабаритные детали. Стеклотекстолиты на основе ненасыщенных полиэфирных смол (ПН-1) также не требуют высокого давления при прессовании и применяются для изготовления крупногабаритных деталей.
Материал СВАМ представляет собой стекл сволоки истый анизотропный материал, в котором стеклянные нити сразу по выходе из фильер склеиваются между собой в виде стеклянного шпона и затем укладываются как в фанере. Связующие могут быть различными.
При соотношении продольных и поперечных слоев шпона 1 : 1 сгв - 460-^500 МПа и Е >, 35 000 МПа; при соотношении 10 : 1 о„= 850-^950 МПа и Е = 58 000 МПа. Это характеризует СВАМ как конструкционный материал, обладающий большой жесткостью и высокой ударной вязкостью (а = 400ч-600 кДж/м2). Зависимость предела прочности стеклопластиков от вида и содержания наполнителя показана на рис. 217. Макро- и микрострук-
466
тура стеклопластиков' приведена /'
200
100
на рис. 218. С помощью макро-и микроструктурного анализа можно выявлять дефекты структуры: поры, раковины и трещины.
ЬО 60 80
Наполнитель, %
Наличие пор вызывает резкое снижение прочности материала. Дефектность значительно влияет на прочность при межслойном сдвиге и продольном сжатии (рис. 219). Механические свойства стеклопластиков зависят от угла между направлением растягивающей силы и направлением армирующих волокон (рис. 220). Усилить материал в различных направлениях можно соответствующим расположением наполнителя (трубы, цилиндры, получаемые способом намотки). Физико-механические свойства термореактивных пластмасс даны в табл. 47.
Особенностью стеклопластиков является неоднородность механических свойств (разброс показателей достигает 7—15 %), обу-
словленных различными факторами: составом, структурой, технологией.
Степень анизотропии прочности на разрыв в продольном и поперечном направлениях а0/ово и срез т,0/тво (между слоями) для стеклопластиков достигает 2—10, что выше, чем для металлов. Анизотропия упругих свойств выражена слабее, чем анизотропия предела прочности. Механические свойства стеклопластиков зависят от температуры, с повышением температуры прочность снижается.
Длительно стеклопластики могут работать при температуре 200—400 °С, однако кратковременно в течение нескольких десятков секунд стеклопластики выдерживают несколько тысяч градусов, являясь аблирующими теплозащитными материалами. Они применяются в авиационной и ракетной технике.
\
А М П
Длительная прочность стеклопластиков зависит от их состава и внешних условий. Лучшие свойства имеют материалы на основе эпоксидных и фенолоформальдегидных смол. Работоспособность стеклопластиков выше, чем работоспособность металлов. Некоторые стеклотекстолиты обладают выносливостью при изгибе до 1,5'107 циклов. Динамическое сопротивление усталости стекло-текстолитов на различных связующих приведена на рис. 221. Стеклопластики обладают высокой демпфирующей способностью, хорошо работают при вибрационных нагрузках.
Недостатком стеклопластиков является невысокий модуль упругости: Е — 20 000-^58 000 МПа. Однако по удельной жесткости (Е/р) они не уступают сталям, алюминиевым сплавам и титану, а по удельной прочности (а/р) при растяжении превосходят металлы.
Однонаправленные стекловолокниты на высокомодульных волокнах имеют р = 2200 кг/м3; сгв = 2100 МПа; В = 70 000 МПа; а = З00ч-500 кДж/м2; е = 1,3—2,4 %; ст/р = 96 км.
Таким образом, стеклопластики являются конструкционными материалами, применяемыми для силовых изделий в различных отраслях техники: несущие детали летательных аппаратов, кузова и кабины автомашин, автоцистерны, железнодорожные вагоны, корпуса лодок, судов. Из стеклопластиков изготовляют корпуса машин, кожухи, защитные ограждения, вентиляционные трубы, контейнеры и др.
Легирование свинцом снижает механические свойства бронзы, но повышает плотность отливок, а главное — облегчает обработку резанием и улучшает антифрикционные свойства.
Различают деформируемые и литейные оловянные, бронзы (табл. 39). Деформируемые бронзы изготовляют в виде прутков, лент и проволоки в нагартованном (твердом) и отожженном (мягком) состояниях. Эти бронзы чаще предназначаются для изготовления пружин и пружинных деталей, применяемых в различных отраслях промышленности. Структура деформированных оловянных бронз — «-твердый раствор (см. рис. 193, б). Литейные бронзы, содержащие большое количество цинка, фосфора и нередко свинца, имеют Двухфазную структуру: а-твердый раствор и твердые хрупкие включения б-фазы, входящие обычно в структуру эвтектоида (см. рис. 193, а).
Оловянные бронзы обладают хорошими литейными свойствами и применяются для литья деталей сложной формы. Недостатком отливок из оловянных бронз является большая микропористость. Бронзы, особенно двухфазные, обладают высокими антифрикционными свойствами. В связи с этим их часто применяют для изготовления антифрикционных деталей.
Для облегчения обработки давлением бронзы подвергают гомогенизации при 700—750 °С с последующим быстрым охлаждением.
414