
- •3. Механич. Испытания.
- •4. Классиф. Мат-лов.
- •5. Черные Ме.
- •7. Реальные кристаллы
- •9. Кристаллизация Ме. Зародыши. Слиток.
- •12. Диаграмма 1 типа. Правило отрезков.
- •13. Диаграмма 2 типа. Правило отрезков.
- •14. Диаграмма 3 типа. Правило отрезков.
- •15. Диаграмма 4 типа. Правило отрезков.
- •23 Легированные стали классифицируют:
- •24 Легированные стали подразделяют на:
- •31. Влияние легирующих эл-тов на чугун.
- •32. Коррозионно-стойкие стали.
- •33. Серый чугун. Антифрикционные сч
- •37. Технология производства чугуна.
- •40. Отжиг и нормализация
- •43. Отпуск
- •46. Термическая обработка чугунов
- •47. Оборудование при то
- •52. Диффуз. Насыщение сплавов Хг, Аl, Si
- •55. Тугоплавкие металлы и их сплавы
- •56. Титан и сплавы на его основе
- •57. Магний
- •61 Классификация и св –ва медных сплавов
- •62 Классификация бронз. Маркировка и область применения
- •69 Неметаллические материалы. Классификация
- •70-71 Классификация полимеров Структура и св-ва полимеров
40. Отжиг и нормализация
отжиг I рода в зависимости от исходного состояния стали и температуры его выполнения может включать процессы гомогенизации, рекристаллизации, снижения твердости и снятия остаточных напряжений. отжиг I рода проводят при температурах выше или ниже температур фазовых превращений (критических точек А1 и А3).
Этот вид обработки в зависимости от температурных условий его выполнения устраняет химическую или физическую неоднородность, созданную предшествующими обработками.
Диффузионному отжигу (гомогенизация) подвергают слитки легированной стали с целью уменьшения дендритной или внутрикристаллитной ликвации, которая повышает склонность стали, обрабатываемой давлением, к хрупкому излому, к анизотропии свойств и возникновению дефектов.
Дендритная ликвация понижает пластичность и вязкость легированной стали.
Под рекристаллизационным отжигом понимают нагрев холоднодеформированной стали выше температуры начала рекристаллизации, выдержку при этой температуре с последующим охлаждением. Этот вид отжига чаще применяют как промежуточную операцию для снятия наклепа между операциями холодного деформирования.
Отжиг для снятия остаточных напряжений. Этот вид отжига применяют для отливок, сварных изделий, деталей после обработки резанием и др., в которых в процессе предшествующих технологических операций из-за неравномерного охлаждения, неоднородной пластической деформации и т. п. возникли остаточные напряжения.
Отжиг II рода заключается в нагреве стали до темпера тур выше точек Act или Ас3, выдержке и, как правило, последующем медленном охлаждении. Понижая прочность и твердость, отжиг облегчает обработку, резание средне- и высокоуглеродистой стали. Отжиг способствует повышению пластичности и вязкости по сравнению со свойствами, полученными после литья, ковки и прокатки. Различают следующие виды отжига: полный, изотермический и неполный.
Полный отжиг заключается в нагреве доэвтектоидной стали на 30—50 °С выше температуры, соответствующей точке Acs, выдержке при этой температуре для полного прогрева и завершения фазовых превращений в объеме металла и последующем медленном охлаждении.
Изотермический отжиг состоит обычно в нагреве легированной стали, и в сравнительно быстром охлаждении до температуры, лежащей ниже точки A1 (обычно 660—680 °С). При этой температуре казна чают изотермическую выдержку 3—6 ч, необходимую для полного распада аустенита, после чего следует охлаждение на воздухе. Одно преимущество изотермического отжига — в сокращении длительности процесса.
Неполный отжиг отличается от полного тем, что сталь нагревают до более низкой температуры (немного выше точки А1).
Нормализация заключается в нагреве доэвтектоидной стали до температуры, превышающей точку Ас3 на 40—50 °С, заэвтектоидной стали до температуры выше точки Аст также на 40—50 °С. Нормализация вызывает полную фазовую перекристаллизацию стали и устраняет крупнозернистую структуру, полученную при литье при прокатке, ковке или штамповке. Нормализацию широко применяют для улучшения свойств стальных отливок вместо закалки и отпуска.
41 Оловянные и свинцовые баббиты. С одной стороны, баббиты имеют низкую прочность, невысокую температуру плавления (220— 320 °С), повышенную размягчаемость НВ 10—25 (100—250 МПа) при 100 °С, отлично прирабатываются и обладают хорошими антифрикционными свойствами. С другой стороны, они имеют низкое сопротивление усталости, что ухудшает работоспособность подшипника. Оловянные баббиты используют в подшипниках турбин крупных судовых деталей, турбонасосов, турбокомпрессоров, электрических и других тяжелонагруженных машин.
Баббиты Б88 и Б83 являются многокомпонентными сплавами, но основой их служит система Sn—Sb .
Сурьма и олово различаются по плотности, поэтому сплавы этих металлов способны к значительной ликвации. Для предупреждения этого дефекта в баббиты вводят медь. Она образует с сурьмой химическое соединение Cu3Sn.
Цинковые антифрикционные сплавы. Сплавы ЦАМ10-5 и ЦАМ9,5-1,5 кроме алюминия и меди содержат 0,03—0,06 % Mg. В литом виде их применяют для монометаллических вкладышей, втулок, ползунов и т. д., а сплав ЦАМ10-5 для отливки биметаллических изделий со стальным корпусом.
В деформированном виде сплав ЦАМ9,5-1,5 используют для получения биметаллических полос со сталью и алюминиевыми сплавами методом проката и последующей штамповки вкладыша.
Вследствие высоких антифрикционных свойств и достаточной прочности при 120 °С эти сплавы могут заменять бронзы для узлов трения, температура которых не превышает 100 °С.
42 Закалка — термическая обработка — заключается в нагреве стали до температуры выше критической или температуры растворения избыточных фаз, в выдержке и последующем охлаждении со скоростью, превышающей критическую. Закалка не является окончательной операцией термической обработки. Чтобы уменьшить хрупкость и напряжения, вызванные закалкой, и получить требуемые механические свойства, сталь после закалки обязательно подвергают отпуску.
Выбор температуры закалки. Доэвтектоидные стали нагревают о температуры на 30—
50 °С выше точки Ас3 (рис. 132). В этом случае сталь с ходной структурой перлит+феррит при нагреве приобретает аустенитную структуру, которая при последующем охлаждении со скоростью выше критической превращается б мартенсит. Закалку от температур, соответствующих межкритическому интервалу (AcL—Лс3), применяют только для листовой низколегированной низкоуглеродистой стали (см, с. 266) для получения структуры феррита с небольшими участками мартенсита (20—30 %), обеспечивающей хорошие механические свойства и штампуемость (см. с. 266). Во всех других случаях закалка доэвтектоидных сталей из межкритического интервала температур не применяется, так как механические свойства оказываются ниже, чем после закалки от температур выше точки Л8.
Заэвтектоидные стали под закалку нагревают несколько выше температуры точки Ac3 При таком нагреве образуется аустенит при сохранении некоторого количества цементита. После охлаждения структура стали состоит из мартенсита и нерастворимых частиц карбидов, обладающих высокой твердостью (рис. 132, б). Верхний предел температуры закалки для большинства заэвтектоидных сталей ограничивают, так как чрезмерное повышение температуры выше точки Аг связано с ростом зерна, что приводит к снижению прочности и сопротивления хрупкому разрушению. Поэтому интервал колебания температур закалки большинства сталей невелик (15—20 °С).