
- •3. Механич. Испытания.
- •4. Классиф. Мат-лов.
- •5. Черные Ме.
- •7. Реальные кристаллы
- •9. Кристаллизация Ме. Зародыши. Слиток.
- •12. Диаграмма 1 типа. Правило отрезков.
- •13. Диаграмма 2 типа. Правило отрезков.
- •14. Диаграмма 3 типа. Правило отрезков.
- •15. Диаграмма 4 типа. Правило отрезков.
- •23 Легированные стали классифицируют:
- •24 Легированные стали подразделяют на:
- •31. Влияние легирующих эл-тов на чугун.
- •32. Коррозионно-стойкие стали.
- •33. Серый чугун. Антифрикционные сч
- •37. Технология производства чугуна.
- •40. Отжиг и нормализация
- •43. Отпуск
- •46. Термическая обработка чугунов
- •47. Оборудование при то
- •52. Диффуз. Насыщение сплавов Хг, Аl, Si
- •55. Тугоплавкие металлы и их сплавы
- •56. Титан и сплавы на его основе
- •57. Магний
- •61 Классификация и св –ва медных сплавов
- •62 Классификация бронз. Маркировка и область применения
- •69 Неметаллические материалы. Классификация
- •70-71 Классификация полимеров Структура и св-ва полимеров
52. Диффуз. Насыщение сплавов Хг, Аl, Si
Насыщение поверхности стали кремнием называют силицированием. Силицирование придает стали высокую коррозионную стойкость в морской воде, в азотной, серной и соляной кислотах и несколько увеличивает устойчивость против износа.
Силицированный слой является твердым раствором кремния в а-железе. Силицированный слой отличается повышенной пористостью, толщина его 300-1000 мкм. Несмотря на низкую твердость 200— 300 HV, Силицированный слой обладает высокой износостойкостью после предварительной пропитки маслом при 170—200 °С. (валики насосов, трубопроводы, арматура, гайки, болты и т. д.)
Алитирование — насыщение поверхности стали алюминием. В результате алитирования сталь приобретает высокую ока-линостойкость (до 850—900 °С), так как в процессе нагрева на поверхности алитированных изделий образуется плотная пленка окиси алюминия А12О8, предохраняющая металл от окисления. Алитированный слой обладает также хорошим сопротивлением коррозии в атмосфере и морской воде. Структура алитированного слоя представляет собой твердый раствор алюминия в а-железе. Концентрация алюминия в поверхностной части слоя составляет ~ 30 %. Толщина слоя 200—1000 мкм. Твердость алитированного слоя (на поверхности) до 500 HV, износостойкость низкая. Алитированию подвергают топливники газогенераторных машин, чехлы термопар, детали разливочных ковшей, клапаны и другие детали, работающие при высоких температурах.
Хромирование — насыщение поверхности втальных изделий хромом. Этот процесс обеспечивает повышенную устойчивость стали к газовой коррозии (окалиностойкость) при температуре до 800 °С, высокую коррозионную стойкость в таких средах, как вода, морская вода и азотная кислота. Хромирование сталей, содержащих свыше 0,3—0,4 % С, повышает также твердость и износостойкость.
Диффузионный слой, получаемый при хромировании техническое железа, состоит из твердого раствора хрома в а-железе. Твердость слоя, полученного хромированием железа, 250—300 HV, а хромированием етали — 1200—1300 HV.Хромирование используют для деталей паросилового оборудования, пароводяной арматуры, клапанов, вентилей, патрубков, а также деталей, работающих на износ в агрессивных средах. Силицированный слой является твердым раствором кремния ва-же-лезе. Под диффузионным слоем часто наблюдается слой перлита. Это объясняется оттеснением углерода из диффузионного слоя вследствие пониженной растворимости его в кремнистом феррите.
53 Борированием называется химико-термическая обработка, заключающаяся в диффузионном насыщении поверхностного слоя стали бором при нагревании в соответствующей среде.Температура насыщения 930—950 °С при выдержке 2—6 ч. Процесс можно вести и без электролиза в ваннах с расплавленными хлористыми солями (NaCl, ВаС12). Хорошие результаты получены при газовом борировянии. В этом случае насыщение ведут при 850—900 °С в среде диборана (В2Н6). Диффузионный слой состоит из боридов FeB (на поверхности) и Fe2B . Толщина слоя 100—200 мкм. Борированный слой обладает высокой твердостью HV 1800—2000 (18 000—20 000 МПа), износостойкостью (главным образом, абразивной), коррозионной стойкостью, окалиностойкостью (до 800 °С) и теплостойкостью. Борирование применяют для повышения износостойкости втулок грязевых нефтяных насосов, дисков пяты турбобура, вытяжных, гибочных и формовочных штампов, деталей пресс-форм и машин для литья под давлением. Стойкость указанных деталей после борирования возрастает в 2—10 раз.
Цементацией (науглероживанием) называется химико-термическая обработка, заключающаяся в диффузионном насыщении поверхностного слоя стали углеродом при нагревании в соответствующей среде — карбюризатореОкончательные свойства цементованные изделия приобретают в результате закалки и низкого отпуска, выполняемых после цементации.
Назначение цементации и последующей термической обработки — придать поверхностному слою высокую твердость и износостойкость, повысить предел контактной выносливости и предел выносливости при изгибе и кручении.
На цементацию детали поступают после механической обработки с припуском на шлифование (50—100 мкм). Во многих случаях цементации подвергается только часть детали; тогда участки, не подлежащие упрочнению, защищают тонким слоем меди (20—40 мкм), которую наносят электрическим способом или изолируют специальными обмазками, состоящими из смеси огнеупорной глины, песка и .асбеста, замешанных на жидком стекле, ленитом и др.
54 Химико-термической обработкой (поверхностным легированием) называют обработку, заключающуюся в сочетании термического и химического воздействий на металлы и сплавы для изменения химического состава структуры и свойств в поверхностных слоях.
Химико-термическая обработка (ХТО) сводится к диффузионному насыщению поверхностного слоя стали неметаллами (С, N, Si, В и др.) или металлами (Cr, A1 и др.) в процессе выдержки при определенной температуре в активной жидкой или газовой среде.
При ХТО одновременно протекают несколько процессов:!
образование в окружающей среде диффундирующего элемента в атомарном состоянии; насыщающая атмосфера должна обеспечивать высокую концентрацию диффундирующего элемента на поверхности обрабатываемого металла. Количество атомов, поступающих из насыщающей среды в металл, в основном определяется скоростью химических реакций, связанной с выделением насыщающего вещества;
адсорбция атомов (ионов) на поверхность металла с образованием химических связей между ионами насыщающего элемента и основного металла;
диффузия адсорбированных атомов от поверхности в глубь обрабатываемого металла (изделия).