Добавил:
kostikboritski@gmail.com Выполнение курсовых, РГР технических предметов Механического факультета. Так же чертежи по инженерной графике для МФ, УПП. Писать на почту. Дипломы по кафедре Вагоны Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
20
Добавлен:
11.08.2017
Размер:
313.86 Кб
Скачать

69 Неметаллические материалы. Классификация

К неметаллическим материалам относятся полимерные материалы органические и неорганические: различные виды пла­стических масс, композиционные материалы на неметаллической основе, каучуки и резины, клеи, герметики, лакокрасочные по­крытия, а также графит, стекло, керамика.

Такие их свойства, как достаточная прочность, жесткость и эластичность при малой плотности, светопрозрачность, химиче­ский стойкость, диэлектрические свойства, делают эти материалы часто незаменимыми. Также следует отметить их технологичность и эффективность при использовании. Эти материалы находят все большее применение в различных отраслях машиностроения.

70-71 Классификация полимеров Структура и св-ва полимеров

Классификация полимеров. Для удобства изучения связи состава, структуры со свойствами полимеров их можно классифи­цировать по различным признакам (составу, форме макромолекул, фазовому состоянию, полярности, отношению к нагреву). По со­ставу все полимеры подразделяют на органические, элементо-органические, неорганические.

Органические полимеры составляют наиболее обширную группу соединений. Если основная молекулярная цепь таких соединений образована только углеродными атомами, то они называются карбоцепными полимерами.

В гетероцепных полимерах атомы других элементов, присут­ствующие в основной цепи, кроме углерода, существенно изме--няют свойства полимера. Так, в макромолекулах атомы кислорода способствуют повышению гибкости цепи, атомы фосфора и хлора повышают огнестойкость, атомы серы придают газонепроницае­мость, атомы фтора, даже в виде радикалов, сообщают полимеру высокую химическую стойкость и т. д.

Органическими полимерами являются смолы и каучуки. Элементоорганические соединения содержат в составе основной цепи неорганические атомы (Si, Ti, A1), сочетающиеся с органическими радикалами (СН3, С6Н&, СН2). Эти радикалы придают материалу прочность и эластичность, а неорганические атомы сообщают повышенную теплостойкость. В природе таких соединений не встречается. Представителями их являются кремнийорганические соединения.

К неорганическим полимерам относятся силикатные стекла, керамика, слюда, асбест. В составе этих соединений углеродного скелета нет. Основу неорганических материалов составляют оксиды кремния, алюминия, магния, кальция и др.

В силикатах существуют два типа связей: атомы в цепи со­единены ковалентными связями (Si—О), а цепи между собой — ионными связями. Неорганические полимеры отличаются более высокой плотностью, высокой длительной теплостойкостью. Однако стекла и керамика хрупкие, плохо переносят динамиче­ские нагрузки. К неорганическим полимерам относится' также графит, представляющий собой карбоцепной полимер.

В технических материалах используют отдельные виды поли­меров и сочетание различных групп полимеров; такие материалы называют композиционными (например, стеклопластики).

Своеобразие свойств полимеров обусловлено структурой их макромолекул. По форме макромолекул полимеры делят на линей­ные (цепевидные), разветвленные, плоские, ленточные (лестнич­ные), пространственные или сетчатые. Линейные макромолекулы полимера представляют собой длинные зигзагообразные или за­крученные в спираль цепочки

Гибкие макромолекулы с высокой прочностью вдоль цепи и слабыми межмолекулярными связями обеспечивают эластичность материала, способность его размягчаться при нагреве, а при охлаждении вновь затвердевать (полиэтилен, полиамиды и др.).

Разветвленные макромолекулы , являясь также линейными, отличаются наличием боковых ответвлений, что пре­пятствует их плотной упаковке (полиизобутилен).

Макромолекула лестничного полимера состоит из двух цепей, соединенных химическими связями. Лестничные полимеры имеют более жесткую основную цепь и обладают повы­шенной теплостойкостью, большей жесткостью, они нерастворимы в стандартных органических растворителях (кремнийоргаиические полимеры).

Пространственные или сетчатые полимеры образуются при соединении («сшивке») макромолекул между собой в поперечном направлении прочными химическими связями непосредственно или через химические элементы или радикалы. В результате образуется сетчатая структура с различной густотой сетки. Редкосетчатые (сетчатые) полимеры теряют способность раство­ряться и плавиться, они обладают упругостью (мягкие резины). Густосетчатые (пространственные) полимеры отличаются твер­достью, повышенной теплостойкостью, нерастворимостью. Про­странственные полимеры лежат в основе конструкционных неметаллических материалов. К сетчатым полимерам отно­сятся также пластинчатые (паркетные) полимеры

По фазовому состоянию полимеры подразделяют на аморфные и кристаллические.

Аморфные полимеры однофазны и построены из цепных моле­кул, собранных в пачки. Пачка состоит из многих рядов макро­молекул, расположенных последовательно друг за другом. Пачки способны перемещаться относительно соседних элементов, так как они являются структурными элементами.

Все полимеры по отношению к нагреву подразделяют на термопластичные и термореактивные.

Термопластичные полимеры при нагреве размягчаются, даже плавятся, при охлаждении затвердевают; этот процесс обратим. Структура макромолекул таких полимеров линейная или раз­ветвленная

Термореактнвные полимеры на первой стадии образования имеют линейную структуру и при нагреве размягчаются, затем вследствие протекания химических реакций затвердевают (обра­зуется пространственная структура) и в дальнейшем остаются твердыми. Отверждешюе состояние полимера называется термо­стабильным.

2. ОСОБЕННОСТИ СВОЙСТВ ПОЛИМЕРНЫХ МАТЕРИАЛОВ

Особенности строения полимеров оказывают большое влияние на их физико-механические и химические свойства. Вследствие высокой молекулярной массы они неспособны переходить в газообразное состояние, при нагреве образовывать низковязкие жидкости, а термостабильные даже не размягчаются. С повышением молекулярной массы уменьшается растворимость.

Полидисперсность, присущая полимерам, приводит к значи­тельному разбросу показателей при определении физико-механи­ческих свойств полимерных материалов. Механические свойства полим:еров (упругие, прочностные) зависят от их структуры, физического состояния, температуры и т. д. Полимеры могут находиться в трех физических состояниях: стеклообразном, высокоэластическом и вязкотекучем.

Стеклообразное состояние — твердое, аморфное

Высокоэластическое состояние присуще только высокополимерам, характеризуется способностью материала к большим обратимым изменениям формы при небольших нагрузках

Вязкотекучее состояние напоминает жидкое состояние, но отличается от него очень большой вязкостью.

Полимеры с пространственной структурой находятся только в стеклообразном состоянии. Редкосетчатая структура позволяет получать полимеры в стеклообразном и высокоэластическом состояниях.

Температурные переходы (tc и *т) являются одними из основных характеристик полимеров.

Зависимость напряжения от деформации для линейных и сетчатых полимеров различна. Линейные полимеры в стеклообразном состоянии обладают некоторой подвижностью сегментов, поэтому полимеры не так хрупки, как неорганические вещества.

При действии больших напряжений в стеклообразных полимерах развиваются значительные деформации, которые по своей природе близки к высокоэластическим

Ориентационное упрочнение. Полимеры как в кристалличе­ском, так и в стеклообразном состоянии могут быть ориентиро­ваны. Процесс осуществляется при медленном растяжении поли­меров, находящихся в высокоэластическом или вязкотекучсм состоянии. Макромолекулы и элементы надмолекулярных струк­тур ориентируются в силовом поле, приобретают упорядоченную структуру по сравнению с неориентированными. После того как достигнута желаемая степень ориентации, температура снижается ниже tc и полученная структура фиксируется.

Некоторые свойства ориентированных аморфных и кристалли­ческих полимеров одинаковы, однако они различаются фазовым состоянием, поэтому с течением времени у кристаллических по­лимеров улучшается их структура, а аморфные ориентированные полимеры чаще всего в дальнейшем дезориентируются (особенно при нагреве).

Релаксационные свойства полимеров. Механические свойства полимеров зависят от времени действия и скорости приложения нагрузок.. (от 10~4 с до нескольких суток и месяцев). Практическое значение имеют случаи релаксации напряжения при неизменяемом относительном удлинении и ползучесть при постоянной нагрузке в статических условиях. Когда образец мгновенно доведен до какого-то зна­чения деформации е, и она поддерживается постоянной, то от перестройки структуры наблюдается постепенное падение на­пряжения в материале, происходит релаксация напряжения.

Старение полимеров. Под старением полимерных материалов понимается самопроизвольное необратимое изменение важнейших технических характеристик, происходящее в результате сложных химических и физических процессов, развивающихся в материале при эксплуатации и хранении. Причинами старения являются свет, теплота, кислород, озон и другие немеханические факторы. Старение ускоряется при многократных деформациях; менее су­щественно на старение влияет влага. Различают старение тепло­вое, световое, озонное и атмосферное.

Сущность старения заключается в сложной цепной реакции, протекающей с образованием свободных радикалов (реже ионов), которая сопровождается деструкцией и структурированием поли­мера. Обычно старение является результатом окисления полимера атмосферным кислородом.

Вакуумстойкость полимеров. Вакуум действует на полимерные материалы по-разному Ухудшение их свойств связано с выделением из материала различных добавок (пластификаторов, стабилизаторов) и про­теканием процессов деструкции. Например, политетрафторэти­лен в вакууме в основном деполимеризуется. Для резин на основе углеводородных каучуков ускоряются накопление оста­точной деформации и релаксации напряжения, что уменьшает работоспособность. Для ориентированных полимеров (поли­амиды, полиэтилен, полипропилен) долговечность в вакууме и на воздухе одинаковы.

73 В основе термопластичных пластмасс лежат полимеры линейной или разветвленной структуры, иногда в состав полиме­ров вводят пластификаторы. Термопласты имеют ограниченную рабочую температуру, свыше 60—70 °С начинается резкое сни­жение физико-механических свойств. Более теплостойкие струк­туры могут работать до 150—250 "С, а термостойкие с жесткими цепями и циклические .структуры устойчивы до 400—600 °С.

При длительном статическом нагружении появляется вынуж­денно-эластическая деформация и прочность понижается. С уве­личением скорости деформирования не успевает развиваться высо-коэластическая деформация и появляется жесткость, иногда даже хрупкое разрушение. Более прочными и жесткими являются кристаллические полимеры. Предел прочности термопластов со­ставляет 10—100 МПа. Модуль упругости (1,8—3,5)103МПа. Они хорошо сопротивляются усталости, их долговечность выше, чем у металлов. Предел выносливости составляет 0,2—0,3 предела прочности. При частотах нагружения свыше 20 Гц происходят разогрев материала и уменьшение прочности.

74 Композиционные материалы с неметаллической матри­цей нашли широкое применение. В качестве неметаллических мат­риц используют полимерные, углеродные и керамические мате­риалы. Из полимерных матриц наибольшее распространение полу­чили эпоксидная, фенолоформальдегидная и полиимидная.. Упрочнителями служат волокна: стеклянные, углеродные, борные, органические, на основе нитевидных кристаллов (оксидов, карбидов, боридов, нитридов и др.), а также металлические (проволоки), обладающие высокой прочностью и жесткостью.

Свойства композиционных материалов зависят от состава ком­понентов, их сочетания, количественного соотношения и прочности связи между ними. Армирующие материалы могут быть в виде волокон, жгутов, нитей, лент, многослойных тканей.

Чем выше прочность и модуль упругости волокон, тем выше прочность и жесткость композиционного материала. Свойства матрицы опре­деляют прочность композиции при сдвиге и сжатии и сопротивле­ние усталостному разрушению.

По виду упрочнителя композиционные материалы классифи­цируют на стекловолокниты (они рассмотрены в гл. XXVII), карбоволокниты с углеродными волокнами, бороволокниты и орга-новолокниты.

Соседние файлы в папке Материаловедение (куча курсачей)