
- •1.Задачи физиологии растений. Теоретическая и практическая значимость физиологии растений.
- •10. Методы учёта транспирации. Единицы измерения транспирации: интенсивность, экономичность, продуктивность транспирации, относительная транспирация. Транспирационный коэффициент.
- •11. Особенности суточного хода движения устьиц у разных растении. Суточный ход процесса транспирации.
- •14. Формы воды в почве. Доступная и недоступная вода. Влажность завядания.
- •15. Водный дефицит. Временное и глубокое завядание. Водный стресс. Влияние на растение недостатка воды.
- •16. Особенности обмена веществ у засухоустойчивых растений. Ксероморфная структура. Правило в.Р. Заленского.
- •17. Изменение засухоустойчивости растений в онтогенезе. Критические периоды (работы Сказкина).
- •18. Методы определения засухоустойчивости растении. Предпосевное закаливание как средство повышения засухоустойчивости растений (работы п.А. Генкеля)
- •19. Типы ксерофитов, их характеристика.
- •20. Поступление питательных веществ в растение.
- •21. Передвижение питательных веществ в растении.
- •22. Почва как источник питательных веществ.
- •23. Особенности питания растений азотом.
- •24. Взаимодействие ионов: антагонизм и синергизм ионов. Уравновешенные растворы.
- •25. Пути обезвреживания аммиака в растении.
- •27. Роль серы, магния и железа в жизни растений. Признаки при их недостатке.
- •29 Особенности потребления минеральных элементов в онтогенезе растений.
- •30. Культура растений без почвы: гидропоника, аэропоника, водные культуры.
- •31. Роль азота, фосфора и калия в жизни растений. Признаки их недостатка.
- •32 Можно ли с помощью удобрений управлять ростом и развитием, химическим составом и качеством урожая?
- •35. Понятие роста и развития растений. Их взаимосвязь.
- •37. Покой как необходимый этап онтогенеза растений.
- •39.Физиолого-биохимические основы формирования семян зерновых культур. Влияние климата и условий выращивания на химический состав зерна.
- •40. Яровизация и фотопериодизм.
- •42. Природные и синтетические регуляторы роста и их применение.
- •43. Размножение растений: половое и бесполое.
- •44.Изменение химического состава плодов и ягод при созревании и хранении.
- •45. Типы углеродного питания растений.
- •46. История открытия и изучения фотосинтеза.
- •48. Пигменты листа. Спектры поглощения пигментов листа.
- •49. Этапы биосинтеза хлорофилла (исследования т.А. Годнева).
- •50. Фотофизический этап фотосинтеза. Понятие о пигментных системах и реакционном центре.
- •51. Пластиды, их структура и функции.
- •52. Фотосинтез как сочетание световых и темновых реакций (исследования Блекмана, Рихтера и Любименко).
- •53. Путь с-4 (цикл Хетча-Слэка-Карпилова). Его особенности.
- •54.Продукты фотосинтеза (работы Ничипировича).
- •55. Происхождение и эволюция фотосинтеза
- •56. Влияние условий на процесс фотосинтеза. Методы изучения фотосинтеза.
- •57. Влияние на фотосинтез условий освещения (работы в.Н. Любименко).
- •58. Темновая фаза фотосинтеза. Цикл Кальвина: карбоксилирование, восстановление и регенерация.
- •60. Дневной ход фотосинтеза. Фотосинтез и урожай. Зависимость урожая от чистой продуктивности фотосинтеза и величины листовой поверхности (исследования а.А. Ничипоровича).
- •61. Взаимосвязь процессов дыхания и брожения
- •62. Влияние внешних и внутренних факторов на процесс дыхания.
- •63. Дыхание и фотосинтез как основные энергетические процессы растительного организма. Черты сходства и различия.
- •64. Дыхание как процесс противоположный фотосинтезу.
- •67. Аэробное дыхание. Особенности аэробного дыхания. Цикл Кребса.
- •68. Анаэробная фаза дыхания (гликолиз). Фосфорилирование субстратное
- •69. Значение дыхания в жизни растения.
- •70. Фотодыхание и его роль.
- •71. Зимостойкость растений. Неблагоприятные факторы осенне-зимне-весеннего периода, их воздействие на растения и меры борьбы с ними.
- •73. Морозоустойчивость растений. Физико-химические изменения при замерзании. Повышение морозоустойчивости растений.
- •74. Холодоустойчивость растений. Способы повышения холодоустойчивости.
- •75. Солеустойчивость растений. Типы галофитов. Способы повышения устойчивости.
- •76. Действие радиации на растения.
21. Передвижение питательных веществ в растении.
В зависимости от уровня организации процесса различают три типа транспорта веществ в растении: внутриклеточный, ближний (внутри органа) и дальний (между органами).
Внутриклеточный транспорт. Передвижение веществ внутри одной клетки осуществляется в результате совместного действия циклозиса (круговое движение цитоплазмы) и направленной поперек этого движения диффузии, чем может достигаться почти полное перемешивание веществ в гиалоплазме. У высших растений Движение цитоплазмы происходит при участии сократительных белков актомиозинового типа. Скорость движения цитоплазмы 0,2—0,6 мм/мин. Во внутриклеточном транспорте веществ принимают участие также каналы эндоплазматического ретикулума и везикулы Гольджи.
Ближний транспорт. Это передвижение ионов, метаболитов и воды между клетками и тканями внутри органа. Ближний транспорт включает радиальный транспорт веществ в корнях и стеблях, передвижение веществ в мезофилле листьев на небольшие расстояния, измеряемые миллиметрами. Осуществляется он через клетки неспециализированных для транспорта веществ тканей по апопласту — совокупности межклетников и межфибриллярных полостей клеточных стенок, симпласту — совокупности протопластов клеток, соединенных плазмодесмами и вакуому — дискретной системе вакуолей клеток.
Дальний транспорт. Это передвижение веществ между органами растения. Осуществляется по специализированной проводящей системе, включающей сосуды и трахеиды ксилемы (восходящий ток) и ситовидные трубки флоэмы (нисходящий ток).
22. Почва как источник питательных веществ.
В почве встречается большое разнообразие соединений различных элементов, вступающих во взмодействие друг с другом. Много пит.в-в содержится в почве в виде минералов или орг.в-в, растворенных в воде. Подавляющая часть питательных веществ находится в почве в связанном состоянии с органическими веществами и алюмосиликатными комплексами. При контакте с почвой корни растений способны растворить почти нерастворимые минералы. Гумусовые в-ва почва содержит во много раз > микроэлементов(Cu,Zn,St,Se,Mn,Ni,Co) эти элементы, поступающие в растение, повышают активность ферментов, каткализируют биохимические процессы, участвуют в фотосинтезе, циклопарафины и нафтеновые к-ты стимулируют рост и развитие растений. В почве содержатся витамины: В6 и В12, тиамин, рибофлавин; ферменты.Пит.в-ва для растений содержатся в почве в 4х формах: раствены в воде (почв.р-р); адсорбированы на поверхности коллоиддов, невымываются, но доступны для растений при ионном обмене; выделяемые растениями ионы(Н+); труднодоступные для растений неорганические соли (сульфаты, фосфаты, карбонаты).
Важную роль в круговороте элементов питания в почве играет гумус. Чем больше запасы гумуса в почве, тем богаче она азотом, фосфором, серой, калием, кальцием и микроэлементами. Доступность растению веществ, адсорбированных почвенными коллоидами, зависит от различных условий. Наряду с насыщенностью почвы данным элементом и прочностью его связь весьма важное значение имеет обеспеченность растений водой. Даже кратковременное завядание резко снижает адсорбционную способность тканей корня и приводит к ослаблению поглотительной деятельности. Важным фактором, определяющим питательный режим почвы, является концентрация водородных ионов почвенного раствора. Высокая концентрация ионов водорода, а на дерново-подзолистых почвах и алюминия оказывает как прямое, так и косвенное вредное действие на питание растений. Прямое действие заключается в нарушении коллоидно-химических свойств протоплазмы растительных клеток, неблагоприятном изменении концентрации органических кислот в клеточном соке, нарушении белкового обмена и торможении синтеза белка, изменении адсорбции и поглощения растениями ионов. Повышенная кислотность особенно сильно влияет на фосфатный режим дерново-подзолистых почв — снижаются подвижность и усвояемость фосфора. Наблюдается прямое неблагоприятное действие алюминия: поступление фосфорнокислого алюминия в корневую систему растений подавляет способность последней подавать фосфор в надземные органы. В результате наблюдается специфическое фосфатное голодание растений.