
- •1.Задачи физиологии растений. Теоретическая и практическая значимость физиологии растений.
- •10. Методы учёта транспирации. Единицы измерения транспирации: интенсивность, экономичность, продуктивность транспирации, относительная транспирация. Транспирационный коэффициент.
- •11. Особенности суточного хода движения устьиц у разных растении. Суточный ход процесса транспирации.
- •14. Формы воды в почве. Доступная и недоступная вода. Влажность завядания.
- •15. Водный дефицит. Временное и глубокое завядание. Водный стресс. Влияние на растение недостатка воды.
- •16. Особенности обмена веществ у засухоустойчивых растений. Ксероморфная структура. Правило в.Р. Заленского.
- •17. Изменение засухоустойчивости растений в онтогенезе. Критические периоды (работы Сказкина).
- •18. Методы определения засухоустойчивости растении. Предпосевное закаливание как средство повышения засухоустойчивости растений (работы п.А. Генкеля)
- •19. Типы ксерофитов, их характеристика.
- •20. Поступление питательных веществ в растение.
- •21. Передвижение питательных веществ в растении.
- •22. Почва как источник питательных веществ.
- •23. Особенности питания растений азотом.
- •24. Взаимодействие ионов: антагонизм и синергизм ионов. Уравновешенные растворы.
- •25. Пути обезвреживания аммиака в растении.
- •27. Роль серы, магния и железа в жизни растений. Признаки при их недостатке.
- •29 Особенности потребления минеральных элементов в онтогенезе растений.
- •30. Культура растений без почвы: гидропоника, аэропоника, водные культуры.
- •31. Роль азота, фосфора и калия в жизни растений. Признаки их недостатка.
- •32 Можно ли с помощью удобрений управлять ростом и развитием, химическим составом и качеством урожая?
- •35. Понятие роста и развития растений. Их взаимосвязь.
- •37. Покой как необходимый этап онтогенеза растений.
- •39.Физиолого-биохимические основы формирования семян зерновых культур. Влияние климата и условий выращивания на химический состав зерна.
- •40. Яровизация и фотопериодизм.
- •42. Природные и синтетические регуляторы роста и их применение.
- •43. Размножение растений: половое и бесполое.
- •44.Изменение химического состава плодов и ягод при созревании и хранении.
- •45. Типы углеродного питания растений.
- •46. История открытия и изучения фотосинтеза.
- •48. Пигменты листа. Спектры поглощения пигментов листа.
- •49. Этапы биосинтеза хлорофилла (исследования т.А. Годнева).
- •50. Фотофизический этап фотосинтеза. Понятие о пигментных системах и реакционном центре.
- •51. Пластиды, их структура и функции.
- •52. Фотосинтез как сочетание световых и темновых реакций (исследования Блекмана, Рихтера и Любименко).
- •53. Путь с-4 (цикл Хетча-Слэка-Карпилова). Его особенности.
- •54.Продукты фотосинтеза (работы Ничипировича).
- •55. Происхождение и эволюция фотосинтеза
- •56. Влияние условий на процесс фотосинтеза. Методы изучения фотосинтеза.
- •57. Влияние на фотосинтез условий освещения (работы в.Н. Любименко).
- •58. Темновая фаза фотосинтеза. Цикл Кальвина: карбоксилирование, восстановление и регенерация.
- •60. Дневной ход фотосинтеза. Фотосинтез и урожай. Зависимость урожая от чистой продуктивности фотосинтеза и величины листовой поверхности (исследования а.А. Ничипоровича).
- •61. Взаимосвязь процессов дыхания и брожения
- •62. Влияние внешних и внутренних факторов на процесс дыхания.
- •63. Дыхание и фотосинтез как основные энергетические процессы растительного организма. Черты сходства и различия.
- •64. Дыхание как процесс противоположный фотосинтезу.
- •67. Аэробное дыхание. Особенности аэробного дыхания. Цикл Кребса.
- •68. Анаэробная фаза дыхания (гликолиз). Фосфорилирование субстратное
- •69. Значение дыхания в жизни растения.
- •70. Фотодыхание и его роль.
- •71. Зимостойкость растений. Неблагоприятные факторы осенне-зимне-весеннего периода, их воздействие на растения и меры борьбы с ними.
- •73. Морозоустойчивость растений. Физико-химические изменения при замерзании. Повышение морозоустойчивости растений.
- •74. Холодоустойчивость растений. Способы повышения холодоустойчивости.
- •75. Солеустойчивость растений. Типы галофитов. Способы повышения устойчивости.
- •76. Действие радиации на растения.
69. Значение дыхания в жизни растения.
Дыхание — один из важнейших процессов обмена веществ растительного организма. Выделяющаяся при дыхании энергия тратится как на процессы роста, так и на поддержание в активном состоянии уже закончивших рост органов растения. Вместе с тем значение дыхания не ограничивается тем, что это процесс, поставляющий энергию. Дыхание, подобно фотосинтезу, сложный окислительно-восстановительный процесс, идущий через ряд этапов. На его промежуточных стадиях образуются органические соединения, которые затем используются в различных метаболических реакциях. К промежуточным соединениям относят органические кислоты и пентозы, образующиеся при разных путях дыхательного распада. Таким образом, процесс дыхания — источник многих метаболитов. Несмотря на то, что процесс дыхания в суммарном виде противоположен фотосинтезу, в некоторых случаях они могут дополнять друг друга. Оба процесса являются поставщиками как энергетических эквивалентов (АТФ, НАДФН), так и метаболитов. Как видно из суммарного уравнения, в процессе дыхания образуется также вода. Эта вода в крайних условиях обезвоживания может использоваться растением и предохранить его от гибели. В некоторых случаях, когда энергия дыхания выделяется в виде тепла, дыхание ведет к бесполезной потере сухого вещества. В этой связи при рассмотрении процесса дыхания надо помнить, что не всегда усиление процесса дыхания является полезным для растительного организма.
Дыхание необходимо для освобождения химической энергии окисляемых субстратов. В реакциях гликолиза (анаэробного этапа дыхания) и дыхательных циклов (цикл ди- и трикарбоновых кислот, пенто-зофосфатный цикл) восстанавливаются коферменты, которые затем окисляются кислородом воздуха в электронтранспортной цепи митохондрий (NADH, FADN2) или используются для синтетических процессов (преимущественно NАDРН).
70. Фотодыхание и его роль.
Фотодыхание — это индуцированное светом поглощение кислорода и выделение СО2, которое наблюдается только в растительных клетках, содержащих хлоропласты. Химизм этого процесса значительно отличается от «темнового» дыхания митохондрий. Первичным продуктом фотодыхания является гликолевая кислота, поэтому такой путь окисления получил название гликолатного. Фотодыхание осуществляется в результате взаимодействия трех органелл — хлоропластов, пероксисом и митохондрий. В основе фотодыхания лежит способность ключевого фермента цикла Кальвина РДФ-карбоксилазы катализировать окислительное расщепление рибулозо-1,5-дифосфата на 3-фосфоглицериновую кислоту и 2-фосфогликолевую кислоту, содержащую два атома углерода. 3-ФГК поступает в цикл Кальвина, а 2-фосфогликолевая кислота подвергается дефосфорилированию с образованием гликолата. Гли-колат из хлоропласта поступает в пероксисому — органеллу овальной формы, окруженную одинарной мембраной. Здесь гликолат под действием гликолатоксидазы окисляется до глиоксилата. Образующаяся при этом перекись водорода расщепляется при участии фермента каталазы. Глиоксилат затем превращается в аминокислоту глицин в результате реакции трансаминирования. В качестве донора аминогруппы функционирует глутаминовая кислота. Глицин транспортируется в митохондрию. Там из двух молекул глицина образуется серии и освобождается СО2 Таким образом, часть углерода, фиксированного в цикле Кальвина, теряется растением. Поэтому при интенсивном фотодыхании продуктивность фотосинтеза снижается.
У некоторых растений фотодыхание или какие-то сопутствующие ему реакции необходимы для того, чтобы жизненный цикл протекал нормально.