
- •1.Задачи физиологии растений. Теоретическая и практическая значимость физиологии растений.
- •10. Методы учёта транспирации. Единицы измерения транспирации: интенсивность, экономичность, продуктивность транспирации, относительная транспирация. Транспирационный коэффициент.
- •11. Особенности суточного хода движения устьиц у разных растении. Суточный ход процесса транспирации.
- •14. Формы воды в почве. Доступная и недоступная вода. Влажность завядания.
- •15. Водный дефицит. Временное и глубокое завядание. Водный стресс. Влияние на растение недостатка воды.
- •16. Особенности обмена веществ у засухоустойчивых растений. Ксероморфная структура. Правило в.Р. Заленского.
- •17. Изменение засухоустойчивости растений в онтогенезе. Критические периоды (работы Сказкина).
- •18. Методы определения засухоустойчивости растении. Предпосевное закаливание как средство повышения засухоустойчивости растений (работы п.А. Генкеля)
- •19. Типы ксерофитов, их характеристика.
- •20. Поступление питательных веществ в растение.
- •21. Передвижение питательных веществ в растении.
- •22. Почва как источник питательных веществ.
- •23. Особенности питания растений азотом.
- •24. Взаимодействие ионов: антагонизм и синергизм ионов. Уравновешенные растворы.
- •25. Пути обезвреживания аммиака в растении.
- •27. Роль серы, магния и железа в жизни растений. Признаки при их недостатке.
- •29 Особенности потребления минеральных элементов в онтогенезе растений.
- •30. Культура растений без почвы: гидропоника, аэропоника, водные культуры.
- •31. Роль азота, фосфора и калия в жизни растений. Признаки их недостатка.
- •32 Можно ли с помощью удобрений управлять ростом и развитием, химическим составом и качеством урожая?
- •35. Понятие роста и развития растений. Их взаимосвязь.
- •37. Покой как необходимый этап онтогенеза растений.
- •39.Физиолого-биохимические основы формирования семян зерновых культур. Влияние климата и условий выращивания на химический состав зерна.
- •40. Яровизация и фотопериодизм.
- •42. Природные и синтетические регуляторы роста и их применение.
- •43. Размножение растений: половое и бесполое.
- •44.Изменение химического состава плодов и ягод при созревании и хранении.
- •45. Типы углеродного питания растений.
- •46. История открытия и изучения фотосинтеза.
- •48. Пигменты листа. Спектры поглощения пигментов листа.
- •49. Этапы биосинтеза хлорофилла (исследования т.А. Годнева).
- •50. Фотофизический этап фотосинтеза. Понятие о пигментных системах и реакционном центре.
- •51. Пластиды, их структура и функции.
- •52. Фотосинтез как сочетание световых и темновых реакций (исследования Блекмана, Рихтера и Любименко).
- •53. Путь с-4 (цикл Хетча-Слэка-Карпилова). Его особенности.
- •54.Продукты фотосинтеза (работы Ничипировича).
- •55. Происхождение и эволюция фотосинтеза
- •56. Влияние условий на процесс фотосинтеза. Методы изучения фотосинтеза.
- •57. Влияние на фотосинтез условий освещения (работы в.Н. Любименко).
- •58. Темновая фаза фотосинтеза. Цикл Кальвина: карбоксилирование, восстановление и регенерация.
- •60. Дневной ход фотосинтеза. Фотосинтез и урожай. Зависимость урожая от чистой продуктивности фотосинтеза и величины листовой поверхности (исследования а.А. Ничипоровича).
- •61. Взаимосвязь процессов дыхания и брожения
- •62. Влияние внешних и внутренних факторов на процесс дыхания.
- •63. Дыхание и фотосинтез как основные энергетические процессы растительного организма. Черты сходства и различия.
- •64. Дыхание как процесс противоположный фотосинтезу.
- •67. Аэробное дыхание. Особенности аэробного дыхания. Цикл Кребса.
- •68. Анаэробная фаза дыхания (гликолиз). Фосфорилирование субстратное
- •69. Значение дыхания в жизни растения.
- •70. Фотодыхание и его роль.
- •71. Зимостойкость растений. Неблагоприятные факторы осенне-зимне-весеннего периода, их воздействие на растения и меры борьбы с ними.
- •73. Морозоустойчивость растений. Физико-химические изменения при замерзании. Повышение морозоустойчивости растений.
- •74. Холодоустойчивость растений. Способы повышения холодоустойчивости.
- •75. Солеустойчивость растений. Типы галофитов. Способы повышения устойчивости.
- •76. Действие радиации на растения.
31. Роль азота, фосфора и калия в жизни растений. Признаки их недостатка.
Для растений азот - дефицитный элемент. Азот входит в состав белков, ферментов, нуклеиновых кислот, хлорофилла, витаминов, алкалоидов. Уровень азотного питания определяет размеры и интенсивность синтеза белка и других азотистых органических соединений в растениях и ростовые процессы. Растения могут использовать лишь азот минеральный. При недостатке азота в среде обитания тормозится рост растений, ослабляется образование боковых побегов и кущение у злаков, наблюдается мелколистность. Одновременно уменьшается ветвление корней, по соотношение массы корней и надземной части может увеличиваться. Одно из ранних проявлений азотного дефицита - бледно-зеленая окраска листьев, вызванная ослаблением синтеза хлорофилла. Длительное азотное голодание ведет к гидролизу белков и разрушению хлорофилла прежде всего в нижних, более старых листьях и оттоку растворимых соединений азота к более молодым листьям и точкам роста. Вследствие разрушения хлорофилла окраска нижних листьев в зависимости от вида растения приобретает желтые, оранжевые или красные тона, а при сильно выраженном азотном дефиците возможно появление некрозов, высыхание и отмирание тканей. Азотное голодание приводит к сокращению периода вегетативного роста и более раннему созреванию семян.
Фосфор поглощается растениями в виде высшего окисла РО4 и не изменяется, включаясь в органические соединения. В растительных тканях концентрация фосфора составляет 0,2—1,3% от сухой массы растения. В растении функционирует только в виде остатков фосфорной кислоты. Весь обмен сводится к фосфорилированию (присоединение остатка кислоты) и трансфосфорилированию (перенос остатка кислоты с одного вещества на другое). Фосфор - элемент энергетического обеспечения (АТФ, АДФ). Активизирует рост корневой системы и закладки генеративных органов. Ускоряет развитие всех процессов. Повышает зимостойкость. Внешним симптомом фосфорного голодания является синевато-зеленая окраска листьев нередко с пурпурным или фиолетовым оттенком (свидетельство задержки синтеза белка и накопления Сахаров). Листья становятся мелкими и более узкими. Приостанавливается рост растений, задерживается созревание урожая. При дефиците фосфора снижается скорость поглощения кислорода, изменяется активность ферментов, участвующих в дыхательном метаболизме, начинают активнее работать некоторые немитохондриальные системы окисления (оксидаза гликолевой кислоты, аскорбатоксидаза). В условиях фосфорного голодания активируются процессы распада фосфорорганических соединений и полисахаридов, тормозится синтез белков и свободных нуклеотидов.
Содержание калия в тканях составляет в среднем 0,5-1,2% в расчете на сухую массу. Калий не входит ни в одно органическое соединение. В клетках он присутствует в основном в ионной форме и легкоподвижен. В наибольшем количестве калий сосредоточен в молодых растущих тканях, характеризующихся высоким уровнем обмена веществ. Известно участие калия в регуляции вязкости цитоплазмы, в повышении гидратации ее коллоидов и водоудерживающей способности. Калий служит основным противоионом для нейтрализации отрицательных зарядов неорганических и органических анионов. Транспорт углеводов в растении связан с перераспределением калия. Калий является активатором многих ферментных систем. При недостатке калия начинается пожелтение листьев снизу вверх — от старых к молодым. Листья желтеют с краев. В дальнейшем их края и верхушки приобретают бурую окраску, иногда с красными «ржавыми» пятнами; происходит отмирание и разрушение этих участков. Листья выглядят как бы обожженными. При калиевом голодании снижается функционирование камбия, нарушается развитие сосудистых тканей, уменьшается толщина клеточной стенки эпидермиса и кутикулы, тормозятся процессы деления и растяжения клеток. В результате укорачивания междоузлий могут образоваться розеточные формы растений. Верхушечные и верхушечно-боковые почки перестают развиваться и отмирают, активируется рост боковых побегов и растение приобретает форму куста. Недостаток калия снижает продуктивность фотосинтеза, прежде всего за счет уменьшения скорости оттока ассимилятов из листьев: при калиевом голодании она падает более чем в два раза.