
5.
Химическая термодинамика — раздел физической химии, изучающий процессы взаимодействия веществ методами термодинамики.
Основными направлениями химической термодинамики являются:
-
Классическая химическая термодинамика, изучающая термодинамическое равновесие вообще.
-
Термохимия, изучающая тепловые эффекты, сопровождающие химические реакции.
-
Теория растворов, моделирующую термодинамические свойства вещества исходя из представлений о молекулярном строении и данных о межмолекулярном взаимодействии.
Эндергонические процессы
Свободная энергия (дельта G), т.е. доступная клетке энергия - это та часть энергии, которая может быть превращена в работу. При протекании химических реакций в живом организме самопроизвольно идут те процессы, в которых изменение свободной энергии будет отрицательным (-дельта G). Такие процессы называются экзергоническими. Процессы, для которых дельта G является величиной положительной, называются эндергоническими. Эти процессы не могут происходить самопроизвольно. При протекании эндергонических процессов необходим приток энергии извне.
Энергетического сопряжения
В основе биоэнергетических процессов лежит принцип энергетического сопряжения, в соответствии с которым молекулярные превращения, приводящие к возрастанию свободной энергии, — эндергонические реакции (например, синтез белков из аминокислот, гликогена из глюкозы, жиров из жирных кислот и глицерина за счет энергии АТФ) — находятся в динамическом равновесии с экзергоническими, происходящими со значительным уменьшением энергии (гликолиз и окисление органических веществ кислородом, гидролиз АТФ с образованием АДФ и фосфата).
6.
Химическая кинетика или кинетика химических реакций — раздел физической химии, изучающий закономерности протекания химических реакций во времени, зависимости этих закономерностей от внешних условий, а также механизмы химических превращений
Основные понятия химической кинетики:
Скорость химической реакции — изменение количества вещества одного из реагирующих веществ за единицу времени в единице реакционного пространства. Является ключевым понятием химической кинетики. Скорость химической реакции — величина всегда положительная, поэтому, если она определяется по исходному веществу (концентрация которого убывает в процессе реакции)
Факторы влияющие на скорость хим. реакции:
1) Природа химических реагентов
Свойство простых тел, а также формы и свойства соединений форм наход-хся в периодической зависимости от величины атомных весов
Свойство простых веществ, а также формы и свойство соединений элементов, находящихся в перио. Зависимости от величины заряда атома элемента.
Закон действующих масс = Закон сохранения масс
Скорость химической реакции прямо пропорционально концент. веществ в степени харак. Коэффициентов.
V=k*CAa*CBb | Vср = ± Dc / Dt | Vист. = ± dc / dt.
Отношение Dc / Dt характеризует скорость за какой-то промежуток времени и называется средней скоростью. Чем меньше интервал D t и изменение Dc, тем точнее отношение Dc /Dt соответствует истинной (мгновенной) скорости в данный момент. Математически это представляется в виде производной от концентрации по времени.
Гомогенные реакции протекают в пределах одной фазы, например, в смеси газов или в растворе.
Гетерогенные реакции протекают на границе раздела фаз, например, твердой и жидкой, твердой и газообразной.
Реакции, в которых исходные вещества способны образовывать разные продукты реакции или одно вещество одновременно способно реагировать с несколькими веществами, называются параллельными.
Последовательными называются сложные реакции, протекающие таким образом, что вещества, образующиеся в результате одной стадии (т.е. продукты этой стадии), являются исходными веществами для другой стадии. Схематически последовательную реакцию можно изобразить следующим образом:
А ––> В ––> С ––> ..
Сопряжённые реакции.
Сопряжёнными принято называть сложные реакции, протекающие следующим образом:
1) А + В ––> С
2) А + D ––> Е,
причём одна из реакций может протекать самостоятельно, а вторая возможна только при наличии первой.
Цепные реакции.
Цепными называют реакции, состоящие из ряда взаимосвязанных стадий, когда частицы, образующиеся в результате каждой стадии, генерируют последующие стадии. Как правило, цепные реакции протекают с участием свободных радикалов. Для всех цепных реакций характерны три типичные стадии, которые мы рассмотрим на примере фотохимической реакции образования хлор водорода.
Н2 + Сl• ––> НСl + Н•
Н• + Сl2 ––> НСl + Сl•
Молекулярность реакции
Молекулярность элементарной реакции — число частиц, которые, согласно экспериментально установленному механизму реакции, участвуют в элементарном акте химического взаимодействия.
Мономолекулярные реакции — реакции, в которых происходит химическое превращение одной молекулы (изомеризация, диссоциация и т. д.):
H2S → H2 + S
Бимолекулярные реакции — реакции, элементарный акт которых осуществляется при столкновении двух частиц (одинаковых или различных):
СН3Вr + КОН → СН3ОН + КВr
Тримолекулярные реакции — реакции, элементарный акт которых осуществляется при столкновении трех частиц:
О2 + NО + NО → 2NО2
Реакции с молекулярностью более трёх неизвестны.
Для элементарных реакций, проводимых при близких концентрациях исходных веществ, величины молекулярности и порядка реакции совпадают. Чётко определенной взаимосвязи между понятиями молекулярности и порядка реакции нет, так как порядок реакции характеризует кинетическое уравнение реакции, а молекулярность — механизм реакции.
7. Влияние концентраций реагирующих веществ. Чтобы осуществлялось химическое взаимодействие веществ А и В, их молекулы (частицы) должны столкнуться. Чем больше столкновений, тем быстрее протекает реакция. Число же столкновений тем больше, чем выше концентрация реагирующих веществ. Отсюда на основе обширного экспериментального материала сформулирован основной закон химической кинетики, устанавливающий зависимость скорости реакции от концентрации реагирующих веществ:
Скорость химической реакции пропорциональна произведению концентраций реагирующих веществ.
v = kcA cB
Реакции нулевого порядка
V=k0
Реакции первого порядка
Реакции второго порядка
Константа скорости реакции k зависит от природы реагирующих веществ и от температуры, но не зависит от их концентраций.
Уравнение, связывающее скорость реакции с концентрацией реагирующих веществ, называется кинетическим уравнением реакции. Если опытным путем определено кинетическое уравнение реакции, то с его помощью можно вычислять скорости при других концентрациях тех же реагирующих веществ.
Еще одной кинетической характеристикой реакции является период полу превращения t1/2 – время, за которое концентрация исходного вещества уменьшается вдвое по сравнению с исходной. Выразим t1/2 для реакции первого порядка, учитывая, что С = ½Со.
8.
Влияние температуры на количество столкновений молекул может быть показано с помощью модели. В первом приближении влияние температуры на скорость реакций определяется правилом Вант-Гоффа (сформулировано Я. Х. Вант-Гоффом на основании экспериментального изучения множества реакций):
В интервале температур от 0оС до 100оС при повышении температуры на каждые 10 градусов скорость химической реакции возрастает в 2-4 раза:
где g – t температурный коэффициент,
принимающий значения от 2 до 4.
С. Аррениус рассчитал долю активных (т.е. приводящих к реакции) соударений реагирующих частиц a, зависящую от температуры: - a = exp(-E/RT). и вывел уравнение Аррениуса для константы скорости реакции:
K=k0*e-E/RT
где ko и E d зависят от природы реагентов. Е - это энергия, которую надо придать молекулам, чтобы они вступили во взаимодействие, называемая энергией активации.
9.
Катализ – явление изменения скорости химической реакции в присутствии веществ, состояние и количество которых после реакции остаются неизменными.
Гомогенный катализ – каталитические реакции, в которых реагенты и катализатор находятся в одной фазе. В случае гомогенно-каталитических процессов катализатор образует с реагентами промежуточные реакционноспособные продукты.
Гетерогенный катализ – каталитические реакции, идущие на поверхности раздела фаз, образуемых катализатором и реагирующими веществами. Механизм гетерогенно-каталитических процессов значительно более сложен, чем в случае гомогенного катализа.
Ферментативный катализ – каталитические реакции, протекающие с участием ферментов – биологических катализаторов белковой природы. Ферментативный катализ имеет две характерные особенности:
1. Высокая активность.
2. Высокая специфичность.
Уравнение Михаэ́лиса — Ме́нтен — основное уравнение ферментативной кинетики, описывает зависимость скорости реакции, катализируемой ферментом, от концентрации субстрата и фермента
субстратная константа KS, характеризующая взаимодействие фермента с субстратом в равновесных условиях.
S- концентрация субстрата.
10.
Реакции, которые протекают только в одном направлении и завершаются полным превращением исходных реагирующих веществ в конечные вещества, называются необратимыми.
Примером такой реакции может служить разложение хлората калия (бертолетовой соли) при нагревании:
2KClO 3 = 2KCl + 3O 2 ↑
Обратимыми называются такие реакции, которые одновременно протекают в двух взаимно противоположных направлениях.
Константа равновесия — величина, определяющая для данной химической реакции соотношение между термодинамическими активностями (либо, в зависимости от условий протекания реакции, парциальными давлениями) исходных веществ и продуктов в состоянии химического равновесия (в соответствии с законом действующих масс). Зная константу равновесия реакции, можно рассчитать равновесный состав реагирующей смеси, предельный выход продуктов, определить направление протекания реакции.
С ростом температуры константа равновесия эндотермической реакции увеличивается.
Константа равновесия гетерогенной реакции не зависит от концентраций твердых веществ.
В выражение константы равновесия гетерогенной реакции, как и в выражение закона действия масс, входят только концентрации веществ, находящихся в жидкой или газообразной фазе, так как концентрации твердых веществ остаются, как правило, постоянными.
11.
Равновесие термодинамическое, состояние термодинамической системы, в которое она самопроизвольно приходит через достаточно большой промежуток времени в условиях изоляции от окружающей среды, после чего параметры состояния системы уже не меняются со временем.
Одним из условий Равновесие термодинамическое является механическое равновесие, при котором невозможны никакие макроскопические движения частей системы, но поступательное движение и вращение системы как целого допустимы.
Константа равновесия( Кр) связана со стандартной энергией Гиббса реакции простым соотношением:
AG°r= -RT\nKp
где R — молярная газовая постоянная [8,31 Дж/(моль-К) ].
Т — термодинамическая температура, К.
Кр—константа равновесия гомогенной реакции.
А – число активных молекул.
G- Энергия Гиббса.
Правило Вант-Гоффа
Принцип Ле Шателье — Брауна (1884 г.) — если на систему, находящуюся в равновесии, воздействовать извне, изменяя какое-нибудь из условий (температура, давление, концентрация), то равновесие смещается таким образом, чтобы компенсировать изменение.
12.
Раствор — гомогенная (однородная) смесь, образованная не менее чем двумя компонентами, один из которых называется растворителем, а другой растворимым веществом, это также система переменного состава, находящаяся в состоянии химического равновесия.
Вода - прежде всего растворитель, в среде которого протекают все элементарные акты жизнедеятельности. К тому же вода - продукт и субстрат энергетического метаболизма в живой клетке. Образно говоря, вода - это арена, на которой разыгрывается действие жизни и участник основных биохимических превращений.
Наиболее важны следующие свойства воды:
-
Чистота воды – наличие в ней примесей, бактерий, солей тяжелых металлов, хлора и др.
-
Поверхностное натяжение – это степень сцепления молекул воды друг с другом.
-
Жесткость воды – наличие в ней солей. От жесткости зависит также степень взаимодействия воды с другими веществами.
-
Кислотно-щелочное равновесие воды. Основные жизненные среды (кровь, лимфа, слюна, межклеточная жидкость, спинномозговая жидкость и др.) имеют слабощелочную реакцию (в среднем 7,5 ед.).
-
Окислительно-восстановительный потенциал воды (ОВП). Это способность воды вступать в биохимические реакции. Она определяется наличием свободных электронов. Это очень важный показатель для организма человека.
-
Структура воды. Вода представляет собой жидкий кристалл.
-
Информационная память воды. За счет структуры кристалла происходит запись биополевой информации.
-
Минерализация воды. Наличие в воде макро- и микроэлементов необходимо для здоровья.
Диаграмма состояния воды
Идеальным раствором называют раствор, для которого выполняется первый закон Рауля.
Первый закон Рауля связывает давление насыщенного пара над раствором с его составом; он формулируется следующим образом:
Парциальное давление насыщенного пара компонента раствора прямо пропорционально его мольной доле в растворе, причём коэффициент пропорциональности равен давлению насыщенного пара над чистым компонентом.
Вода является растворителем для многих веществ. Она используется для очистки как самого человека, так и различных объектов человеческой деятельности. Вода используется как растворитель в промышленности.
13.
Растворимость газов в жидкостях зависит от ряда факторов: природы газа и жидкости, давления, температуры, концентрации растворенных в жидкости веществ (особенно сильно влияет на растворимость газов концентрация электролитов).
Наибольшее влияние на растворимость газов в жидкостях оказывает природа веществ.
Растворимость газа в жидкости прямо пропорциональна его давлению над жидкостью.
Здесь С – концентрация раствора газа в жидкости, k – коэффициент пропорциональности, зависящий от природы газа. Закон Генри – Дальтона справедлив только для разбавленных растворов при малых давлениях, когда газы можно считать идеальными. Газы, способные к специфическому взаимодействию с растворителем, данному закону не подчиняются. Растворимость газов в жидкостях существенно зависит от температуры
Закон Генри — Дальтона — относится к растворимости газов в жидкости в зависимости от упругости этого газа, производящего давление на жидкость.
14.
Коллигативные свойства растворов — это те их свойства, которые при данных условиях оказываются равными и независимыми от химической природы растворённого вещества; свойства растворов, которые зависят лишь от количества кинетических единиц и от их теплового движения.
Первый закон Рауля
Пар, находящийся в равновесии с жидкостью, называют насыщенным. Давление такого пара над чистым растворителем (p0) называют давлением или упругостью насыщенного пара чистого растворителя.
Давление пара раствора, содержащего нелетучее растворенное вещество, прямо пропорционально мольной доле растворителя в данном растворе:
p = p0 · χр-ль
p — давление пара над раствором, ПА;
p0 — давление пара над чистым растворителем;
χр-ль — мольная доля растворителя.
Для растворов электролитов используют несколько другую форму уравнения, позволяющую добавить в неё изотонический коэффициент:
Δp = i · p0 · χв-ва
Δp — собственно изменение давления по сравнению с чистым растворителем;
χв-ва — мольная доля вещества в растворе.
Второй закон Рауля
Повышение температуры кипения раствора по сравнению с температурой кипения растворителя, а равно и понижение температуры замерзания раствора по сравнению с аналогичным характеризующей величиной для растворителя прямо пропорциональна моляльности раствора, то есть,
ΔTкип/зам= Kэб/кр · bв-ва
Kэб/кр — соответственно эбулиоскопическая и криоскопическая (относится к замерзанию) константы, характерные для данного растворителя;
bв-ва — моляльность вещества в растворе.
Криометрия - используется, напр., для анализа биологических жидкостей.
15.
При контакте двух различных по своему составу тел независимо от их агрегатного состояния происходит взаимное перемещение молекул одного вещества в другое – диффузия.
Диффузия в растворах или газах сопровождается конвекцией (перемешиванием за счет разности температур в различных токах объема) или за счет различия в плотности соприкасающихся сред. В чистом виде диффузия происходит при контакте раствора или растворителя с плотной средой. В этих случаях скорость диффузии зависит главным образом от структуры плотного материала, которая создает дополнительные препятствия для перемещения молекул диффундирующего вещества.
Осмос — процесс односторонней диффузии через полупроницаемую мембрану молекул растворителя в сторону большей концентрации.
Осмотическое давление (обозначается π) — избыточное гидростатическое давление на раствор, отделённый от чистого растворителя полупроницаемой мембраной, при котором прекращается диффузия растворителя через мембрану. Это давление стремится уравнять концентрации обоих растворов вследствие встречной диффузии молекул растворённого вещества и растворителя.