Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
66
Добавлен:
18.06.2017
Размер:
140.38 Кб
Скачать
  1. Представления о строении металлоферментов и других биокомплексных соединений (гемоглобин, цитохромы, кобаламины). Физико-химические принципы транспорта кислорода гемоглобином.

Металлоферменты, или металлоэнзимы — общее собирательное название класса ферментов, для функционирования которых необходимо присутствие катионов тех или иных металлов. В подобном ферменте могут присутствовать несколько различных ионов металла. Катион металла при этом обеспечивает правильную пространственную конфигурацию активного центраметаллофермента. Примерами металлоферментов являются селен-зависимая монодейодиназа, конвертирующая тироксин в трийодтиронин, или железо-зависимые тканевые дыхательные ферменты. Помимо принадлежности к классу ферментов, металлоферменты принадлежат также к обширному классу металлопротеидов — белков (не обязательно ферментов), в состав которых входят катионы металлов.

Промежуточное положение между специфическими и неспецифическими ферментами занимают некоторые металлоферменты. Ионы металлов выполняют функцию кофактора.  Повышение прочности биокомплекса фермента повышает специфичность его биологического действия.  На эффективность ферментативного действия иона металла фермента оказывает  влияние его степень окисления. По интенсивности влияния микроэлементы расположены в следующий ряд:

Ti4+®Fe3+®Cu2+®Fe2+®Mg2+®Mn2+. Ион Мn3+ в отличии от иона Мn2+, очень прочно связан с белками, причем преимущественно с кислородосодержащими группами совместно Fe3+ входит в состав металлопротеинов.

Микроэлементы в комплексонатной форме выступают в организме в качестве фактора, определяющего, по-видимому, высокую чувствительность клеток к микроэлементам путем ихучастия в создании высокого градиента концентрации.  Значения атомных и ионных радиусов, энергий ионизации, координационных чисел, склонность к образованию связей с одними и теми же элементами в молекулах биолигандов обусловливают эффекты, наблюдаемые при взаимном замещении ионов: может происходить с усилением (синергизм), так и с угнетением ихбиологической активности (антагонизм) замещаемого элемента.  Ионы d-элементов в степени окисления +2 (Mn, Fe, Co, Ni, Zn) имеют сходные физико-химические характеристики атомов (электронную структуру внешнего уровня, близкие радиусы ионов, тип гибридизации орбиталей, близкие значения констант устойчивости с биолигандами). Сходство физико-химических характеристик комплексообразователя определяет близость их биологического действия и взаимозаме­няемость. Указанные выше переходные элементы стимулируют процессы кроветворения, усиливают процессы обмена веществ. Синергизм элементов в процессах кроветворения связан возможно, с участием ионов этих элементов в различных этапах процесса синтеза форменных элементов крови человека.

  1. Окислительно-восстановительные (редокс) реакции. Механизм возникновения электродного и редокс-потенциалов. Уравнения Нернста-Петерса. Сравнительная сила окислителей и восстановителей. Прогнозирование направления редокс-процессов по величинам редокс-потенциалов.

Оксилительно-восстановительными реакциями называют химические процессы, сопровождающиеся переносом электронов от одних молекул или ионов к другим

При составлении уравнений окислительно-восстановительных реакций можно применять 2 метода: метод электронного баланса и ионно-электронный метод.

Соседние файлы в папке неорганика