
- •Вопрос 1.Основные понятия термодинамики.
- •Вопрос 2. Первое начало термодинамики.
- •Вопрос 3. Второе начало термодинамики.
- •Вопрос 4. Термодинамические условия равновесия.
- •Вопрос 6. Предмет и основные понятия химической кинетики.
- •Вопрос 7. Зависимость скорости реакции от концентрации.
- •Вопрос 8. Зависимость скорости химической реакции от температуры.
- •Вопрос 9. Катализ.
- •Вопрос 10. Кислоты и основания.
- •Вопрос 12. Коллигативные свойства разбавленных растворов неэлектролитов и электролитов.
- •Второй закон Рауля
- •Вопрос 13. Элементы теории растворов электролитов.
- •Вопрос 14. Электрическая проводимость растворов.
- •Вопрос 15. Кондуктометрия. Использование кондуктометрических измерений в медицине и биологии.
- •Вопрос 16. Осмос.
- •Вопрос 17. Растворимость газов в жидкостях и ее зависимость от различных факторов.
- •Вопрос 21. Буферные системы крови: гидрокарбонатная, фосфатная, гемоглобиновая, протеиновая.
- •Белковая буферная система. В сравнении с другими буферными системами имеет меньшее значение для поддержания кислотно-основного равновесия.
- •Гемоглобиновая буферная система.
- •Вопрос 22. Гетерогенные реакции в растворах электролитов.
- •Вопрос 23. Механизм функционирования кальций-фосфатного буфера.
- •Вопрос 24. Строение комплексных соединений.
- •Вопрос 25. Константа нестойкости комплексного иона.
- •Вопрос 26. Представление о строении металлферментов и других биокомплексных соединений.
- •Вопрос 27. Окислительно-восстановительные реакции.
- •Вопрос 28. Константа окислительно-восстановительного процесса.
- •Вопрос 29. Адсорбционные равновесия и процессы на подвижных границах раздела.
- •Вопрос 30. Адсорбционные равновесия на неподвижных границах раздела фаз.
- •Вопрос 31. Классификация дисперсных систем.
- •Вопрос 32. Лигандные, гетерогенные и протолитические равновесия с участием важнейших биогенных элементов (примеры).
- •Вопрос 33. Устойчивость дисперсных систем.
- •Вопрос 34. Свойства растворов вмс.
- •Вопрос 35. Осмотическое давление растворов биополимеров.
- •Вопрос 36. Устойчивость растворов биополимеров.
- •Вопрос 37. Титриметрический анализ.
- •Вопрос 38. Окислительно-восстановительное титрование.
- •Вопрос 39. Комплексонометрическое титрование: комплексонометрия.
- •Вопрос 40. Потенциометрия.
Вопрос 9. Катализ.
Под катализом понимают изменение скорости химических реакций в присутствии веществ, которые после завершения реакции остаются в неизменном виде и количестве. Увеличение скорости реакции называют положительным катализом, уменьшение — отрицательным катализом, или ингибированием. Катализаторами называют вещества, которые вызывают положительный катализ; вещества, замедляющие реакции, называют ингибиторами. Термины «катализ» и «катализаторы» введены в химию шведским химиком И. Берцелиусом (1835 г.).
Если катализатор находится в той же фазе, что и реагирующие вещества, то такой катализ называют гомогенным (пример: разложение водородопероксида в присутствии солей Fe(II) в водных растворах. РЕАКЦИЯ: 2Н2О2→2H2О + O2 над стрелочкой Fe2+ (1) , если же катализатор и реагирующие вещества находятся в разных фазах –гетерогенным (пример: синтез аммиака из азота и водорода в присутствии металлического железа).
Большинство реакций в организмах протекает при участии биологических катализаторов - ФЕРМЕНТАХ. Характерной особенностью Ферментов является их специфичность: свойство изменять скорость реакции одного типа и не влиять на многие другие реакции, протекающие в клетке (каталаза).
Энергетический профиль каталитической реакции - это кривая зависимость координаты реакции (насколько прошла реакция) от времени (при постоянном количестве катализатора) или от количества катализатора. Ферменты ускоряют как прямую, так и обратную реакцию, понижая энергию активации процесса. Химическое равновесие при этом не смещается ни в прямую, ни в обратную сторону.Особенностями ферментов являются:
1) высокая активность
2) высокая специфичность, т.е. избирательность действия
3) тонкий механизм регулировки активности деятельности ферментов с помощью ЭФФЕКТОРОВ (активаторы, ингибиторы)
4) высокая чувствительность к внешним условиям
Большинство ферментативных реакций описывается кинетическими уравнениями нулевого порядка.
Вопрос 10. Кислоты и основания.
Основные положения протолитической теории кислот и оснований Бренстеда – Лоури:
-кислотой называют всякое вещество, молекулярные частицы которого (в том числе и ионы) способны отдавать протон, т.е. быть донором протонов.
-основанием называется всякое вещество, молекулярные частицы которого (в т.ч. и ионы) способны присоединять протоны, т.е. быть акцептором протонов.
Кислоты и основания получили общее название протолитов.
Согласно теории кислоты подразделяются на три вида
Нейтральные кислоты (HCl, H2SO4, H3PO4, и др.)
Катионные кислоты, представляют собой положительные ионы(NH4+, H30+)
Анионные кислоты, представляют собой отрицательные ионы (HSO3-)
Основания:
Нейтральные (NH3, H2O, C2H5OH)
Анионные основания, предст. собой отриц.ионы(Cl-, CH3COO-, OH-)
Катионные основания, предст. Собой положит. ионы(H2N-NH+)
Каждой кислоте соответствует свое основание и каждому основанию -
своя кислота. Эту пару сопряженных веществ называют кислотно-основной или протолитической парой.
Основные положения теории кислот и оснований Льюиса:
В теории Льюиса (1923 г.) на основе электронных представлений было ещё более расширено понятие кислоты и основания. Кислота Льюиса — молекула или ион, имеющие вакантные электронные орбитали, вследствие чего они способны принимать электронные пары. Это, например, ионы водорода — протоны, ионы металлов (Ag+, Fe3+), оксиды некоторых неметаллов (например, SO3, SiO2), ряд солей (AlCl3), а также такие вещества как BF3, Al2O3. Кислоты Льюиса, не содержащие ионов водорода, называются апротонными. Протонные кислоты рассматриваются как частный случай класса кислот.
Основание Льюиса — это молекула или ион, способные быть донором электронных пар: все анионы, аммиак и амины, вода, спирты, галогены.
Амфолиты – молекулы, которые содержат одновременно и кислотные, и основные группы, и поэтому в водных растворах диссоциируют и как кислоты с отщеплением водородных ионов Н +, и как основания с отщеплением гидроксильных ионов ОН-. К амфолитам относятся биологически важные вещества: аминокислоты (см.), пептиды (см.), белки (см.) и др. Кислотные свойства этих веществ обусловлены наличием в них карбоксильных групп СООН, а основные свойства — содержанием аминогрупп NH2. Амфолиты образуют растворы с хорошими буферными свойствами. Благодаря способности к выборочной ионизации они противодействуют изменению pH при добавлении кислоты или основания. Примером может служить гликоколл (аминоуксусная кислота, NH2.CH2.COOH).
Водородный
показатель (рН)
- величина, характеризующая активность
или концентрацию ионов водорода в
растворах. Водородный показатель
обозначается рН.
Водородный показатель
численно равен отрицательному десятичному
логарифму активности или концентрации
ионов водорода, выраженной в молях на
литр:
pH=-lg[ H+ ]
В
воде концентрация ионов водорода
определяется электролитической
диссоциацией воды по
уравнению
H2O=H++OH-
Константа
диссоциации при 22° С составляет
Пренебрегая
незначительной долей распавшихся
молекул, можно концентрацию
недиссоциированной части воды принять
равной обшей концентрации воды, которая
составляет: С[H2O
]=1000/18=55,55моль/л.
Тогда: C[ H+ ]
·C[ OH- ]=K·C[H2O]=1,8·10-16·55,55=10-14
Для
воды и ее растворов произведение
концентраций ионов Н+ и ОН- величина
постоянная при данной температуре. Она
называется ионным произведением воды
КВ и
при 25° С составляет 10-14.
Постоянство
ионного произведения воды дает возможность
вычислить концентрацию ионов H+если
известна концентрация ионов OH-
и
наоборот:
.
Понятия
кислая, нейтральная и щелочная среда
приобретают количественный смысл. В
случае, если [ H+ ]
=[ OH- ]эти
концентрации (каждая из них) равны
моль/л,
т.е [ H+ ]
=[ OH-]=10-7моль/л
и среда нейтральная, в этих растворах
pH=-lg[
H+ ]=7 и
рОН=-lg[ OH-]=7
Если [ H+ ]>10-7моль/л,
[ OH-]<10-7моль/л
-среда кислая; рН<7.
Если [ H+ ]<10-7 моль/л,
[ OH-]>10-7моль/л
-среда щелочная; рН>7.
В
любом водном растворе рН + рОН =14, где
рОН=-lg[ OH-]
Величина рН имеет большое
значение для биохимических процессов,
для различных производственных процессов,
при изучении свойств природных вод и
возможности их применения и т.д.
Вопрос 11. Роль воды и растворов в жизнедеятельности. Вода играет уникальную роль как вещество, определяющее возможность существования и саму жизнь всех существ на Земле. Она выполняет роль универсального растворителя, в котором происходят основные биохимические процессы живых организмов. Уникальность воды состоит в том, что она достаточно хорошо растворяет как органические, так и неорганические вещества, обеспечивая высокую скорость протекания химических реакций и в то же время — достаточную сложность образующихся комплексных соединений.
Благодаря водородной связи, вода остаётся жидкой в широком диапазоне температур, причём именно в том, который широко представлен на планете Земля в настоящее время.
Вода в качестве реагента участвует во многих химических реакциях:
В ходе фотосинтезаурастенийпроисходит фотолиз воды - водород из состава воды входит в органические вещества, а свободный кислород выделяется в атмосферу.
Уравнение фотосинтеза:
6H2O+6CO2=C6H12O6+ 6O2
Вода участвует в гидролизе— разрушении веществ с присоединением воды. Например, гидролиз жиров, белков и углеводов происходит при переваривании пищи, а при гидролизе АТФ выделяется энергия, обеспечивающая нужды клетки.
При гидролизе солей вода является источником протонов и электронов.
Растворы и сам процесс растворения имеют большое значение в природе, в нашей жизни, в науке и технике. Чаще всего мы имеем дело не с чистыми веществами, а со смесями или растворами. Вода морей, рек, озер, грунтовые воды, питьевая вода - это растворы. Воздух - это раствор газов. Большинство минералов - твердые растворы. Соки растений, напитки - это растворы. Усвоение пищи связано с растворением питательных веществ. Растворами есть кровь, лимфа, лекарства, лаки, краски. Растворы используются в промышленности: текстильной, металлообрабатывающей, фармацевтической, при производстве пластмасс, синтетических волокон, мыла и др. При растворении веществ происходит их дробление и рассеивание в объеме раствора. В растворе частицы одного вещества равномерно распределены между частицами другой. Если вещество растворено до уровня молекул, то раствор будет однородным, прозрачным и не будет отстаиваться. Такой раствор является истинным. Например, раствор соли в воде, столовый уксус, раствор сахара. Характерный признак истинных растворов - их однородность. Растворами называют многокомпонентные однородные системы переменного состава. В растворе всегда содержатся растворитель и растворенное вещество.
Вода широко используется в качестве растворителя в химической технологии, а также в лабораторной практике. Она представляет собой универсальный растворитель, необходимый для протекания биохимических реакций. Дело в том, что вода прекрасно растворяет ионные соединения, а также многие ковалентные соединения. Способность воды хорошо растворять многие вещества обусловлена полярностью ее молекул. Молекула воды обладает сравнительно большим дипольным моментом. Поэтому при растворении в ней ионных веществ молекулы воды ориентируются вокруг ионов, т.е. сольватируют их. Водные растворы ионных веществ являются электролитами.
Растворимость ковалентных соединений в воде зависит от их способности образовывать водородные связи с молекулами воды. Водородные связи-это диполь-дипольные взаимодействия между атомами водорода в молекулах воды и электроотрицательными атомами молекул растворенного вещества. Простые ковалентные соединения, как, например, диоксид серы, аммиак и хлороводород, растворяются в воде. Кислород, азот и диоксид углерода плохо растворяются в воде. Многие органические соединения, содержащие атомы электроотрицательных элементов, как, например, кислорода или азота, растворимы в воде. В качестве примера укажем этанол С2Н5ОН, уксусную кислоту СН3СООН, сахар С12Н22О6 и диэтиламин (C2H5)2NH.
Автопротолиз – обратимый процесс образования равного числа катионов и анионов из незаряженных молекул жидкого индивидуального вещества за счет передачи протона от одной молекулы к другой.
H2O + H2O= H3O+ + OH–
Это равновесие называется равновесием автопротолиза воды.
Константа автопротолиза для воды обычно называется ионным произведением воды и обозначается как Kw. Ионное произведение численно равно произведению равновесных концентраций ионов гидроксония и гидроксид-анионов.
Зависимость растворимости: Гидрофильные обеспечивают растворимость в воде, гидрофобные — в неполярных растворителях. Соответствующим образом они располагаются на поверхности раздела фаз. Их основные физико-химические, а отсюда и технологические свойства зависят от химического строения и соотношения молекулярных масс гидрофильных и гидрофобных групп.
Хорошо растворимы - гидрофильные вещества
Гидрофобность - плохая растворимость, молекулы кластеризуются
Гидрофобные - соединения состоящие из электрически-нейтральных, неполярных химических групп - заряды атомов ~ 0 (малы)
Так как растворимость характеризует истинное равновесие, влияние внешних условий на это состояние (давления, температуры) можно качественно оценить, воспользовавшись принципом Ле Шателье:
Влияние температуры зависит от знака теплового эффекта реакции. При повышении температуры химическое равновесие смещается в направлении эндотермической реакции, при понижении температуры — в направлении экзотермической реакции.
Влияние давления. При повышении давления равновесие сдвигается в направлении, в котором уменьшается суммарное количество молей газов и наоборот.
Влияние концентрации. При повышении концентрации одного из исходных веществ равновесие сдвигается в направлении образования продуктов реакции. При повышении концентрации одного из продуктов реакции равновесие сдвигается в направлении образования исходных веществ.
Термодинамика растворения.
Согласно второму началу термодинамики при р, Т = const вещества самопроизвольно могут растворяться в каком-либо растворителе, если в результате этого процесса энергия Гиббса системы уменьшается, т. е. ΔG = (ΔН – TΔS) < 0.
Величину ΔН называют энтальпийным фактором, а величину TΔS – энтропийным фактором растворения.
При растворении жидких и твердых веществ энтропия системы обычно возрастает (ΔS > 0), так как растворяемые вещества из более упорядоченного состояния переходят в менее упорядоченное. Вклад энтропийного фактора, способствующий увеличению растворимости, особенно заметен при повышенных температуры, потому что в этом случае множитель Т велик и абсолютное значение произведения TΔS также велико, соответственно возрастает убыль энергии Гиббса.
При растворении газов в жидкости энтропия системы обычно уменьшается (ΔS < 0), так как растворяемое вещество из менее упорядоченного состояния (большого объема) переходит в более упорядоченное (малый объем). Снижение температуры благоприятствует растворению газов, потому что в этом случае множитель Т мал и абсолютное значение произведения TΔS будет тем меньше, а убыль энергии Гиббса тем больше, чем ниже значение Т.
В процессе образования раствора изменение энтальпии процесса растворения нужно рассматривать в соответствии с законом Гесса как алгебраическую сумму эндо– и экзотермических вкладов всех процессов, сопровождающих процесс растворения. Иначе говоря, изменение энтальпии представляет собой алгебраическую сумму изменения энтальпии ΔНкр в результате разрушения кристаллической решетки и изменения энтальпии ΔНсол за счет сольватации (взаимод. молекул растворенного в-ва с молекулами р-рителя) частицами растворителя:
ΔНраств = ΔНкр + ΔНсол, где ΔНраств – изменение энтальпии при растворении.
При растворении твердых веществ с молекулярной кристаллической структурой и жидкостей молекулярные связи не очень прочные, и поэтому обычно ΔНсол > ΔНкр Это приводит к тому, что растворение, например, спиртов и сахаров представляет собой экзотермический процесс (ΔНраств < 0).
При растворении твердых веществ с ионной решеткой соотношение энергий Екр и Есол могут быть различным. Однако в большинстве случаев энергия, выделяемая при сольватации ионов, не компенсирует энергию, затрачиваемую на разрушение кристаллической решетки, следовательно, и процесс растворения является эндотермическим.
Зависимость растворимости: Гидрофильные обеспечивают растворимость в воде, гидрофобные — в неполярных растворителях. Соответствующим образом они располагаются на поверхности раздела фаз. Их основные физико-химические, а отсюда и технологические свойства зависят от химического строения и соотношения молекулярных масс гидрофильных и гидрофобных групп.
Хорошо растворимы - гидрофильные вещества
Гидрофобность - плохая растворимость, молекулы кластеризуются
Гидрофобные - соединения состоящие из электрически-нейтральных, неполярных химических групп - заряды атомов ~ 0 (малы)
Так как растворимость характеризует истинное равновесие, влияние внешних условий на это состояние (давления, температуры) можно качественно оценить, воспользовавшись принципом Ле Шателье.