
лучистая фигура. В большинстве растительных клеток центриолей нет.
К концу профазы ядрышки исчезают, ядерная оболочка под действием ферментов из лизосом растворяется, хромосомы оказываются погруженными в цитоплазму. Одновременно появляется ахроматиновая фигура, которая состоит из нитей, тянущихся от полюсов клетки (если есть центриоли, то от них). Ахроматиновые нити прикрепляются к центромерам хромосом. Образуется характерная фигура, напоминающая веретено. Электронно-микроскопические исследования показали, что нити веретена — это трубочки, канальцы.
В промеигяфазе в центре клетки находится цитоплазма, имеющая незначительную вязкость. Погруженные в нее хромосомы направляются к экватору клетки.
В метафазе хромосомы находятся в упорядоченном состоянии в области экватора. Хорошо видны все хромосомы, благодаря чему изучение кариотипов (подсчет числа, изучение форм хромосом) проводится именно в этой стадии. В это время каждая хромосома состоит из двух хроматид, концы которых разошлись. Поэтому на метафазных пластинках (и идиограммах из метафазных хромосом) хромосомы имеют Х-образную форму. Изучение хромосом проводится именно в этой стадии.
В анафазе каждая хромосома продольно расщепляется по всей ее длине, в том числе и в области центромеры, точнее сказать, происходит расхождение хроматид, которые после этого становятся сестринскими, или дочерними, хромосомами. Они имеют палочкообразную форму, изогнутую в области первичной перетяжки. Нити веретена сокращаются, направляются к полюсам, а за ними начинают расходиться к полюсам и дочерние хромосомы. Расхождение их осуществляется быстро и всех одновременно, как «по команде». Это хорошо показывают кинокадры делящихся клеток. Бурные процессы происходят и в цитоплазме, которая на кинопленке напоминает кипящую жидкость.
В телофазе дочерние хромосомы достигают полюсов. После этого хромосомы деспирализуются, теряют ясные очертания, вокруг них формируются ядерные оболочки. Ядро приобретает строение, сходное с интерфазным материнской клетки. Восстанавливается ядрышко.
Далее происходит цитокинез, т. е. разделение цитоплазмы. В клетках животных этот процесс начинается с образования в экваториальной зоне перетяжки, которая, все более углубляясь, отделяет, наконец, сестринские клетки друг от друга. В клетках растений разделение сестринских клеток начинается во внутренней области материнской клетки. Здесь мелкие пузырьки эндоплазматической сети сливаются, образуя,
целлюлозных клеточных оболочек связано с использованием секретов, накапливающихся в диктиосомах.
Митоз, сочетающийся с задержкой цитокинеза, приводит к образованию многоядерных клеток. Такой процесс, наблюдается, например, при размножении простейших путем схизогонии. У многоклеточных организмов так образуются синцитии, т. е. ткани, состоящие из протоплазмы, в которой отсутствуют границы между клетками. Такими являются некоторые мышечные ткани и тегумент плоских червей.
Продолжительность каждой из фаз митоза различна — от нескольких минут до сотен часов, что зависит от ряда причин: типа тканей, физиологического состояния организма, внешних факторов
(температура, свет, химические вещества). Изучение влияния этих, факторов на различные периоды митотического цикла с целью воздействия на него имеет большое практическое значение.
Амитоз — так называемое прямое деление ядра клетки. При этом делении морфологически сохраняется интерфазное состояние* ядра, хорошо видны ядрышко и ядерная мембрана. Хромосомы не выявляются и равномерного распределения их не происходит. Ядро делится на две относительно равные части без образования ахроматинового аппарата. На этом деление может закончиться, и возникает двухядерная клетка; иногда перешнуровывается и цитоплазма. Описано * амитотическое деление ядер в некоторых дифференцированных тканях, например в скелетной мускулатуре, клетках кожного эпителия, соединительной ткани и некоторых других, а также в патологически измененных клетках. Однако этот способ деления ядра никогда не встречается в клетках, нуждающихся в сохранении полноценной генетической информации, например в оплодотворенных яйцеклетках и клетках нормально развивающихся эмбрионов.Там встречается только митоз. Амитоз не может считаться полноценным способом размножения ядер клеток эука-рйотов.
Эндомитоз (rp. endon — внутри). При эндомитозе после репродукции хромосом деления клетки не происходит. Это приводит к увеличению числа хромосом иногда в десятки раз по сравнению с диплоидным набором, т. е. приводит к возникновению полиплоидных клеток. Эндомитоз встречается в интенсивно функционирующих клетках различных тканей, например в клетках печени.
Политения (гр. poly — много). Политенией называется воспроизведение в хромосомах тонких структур — хромонем, количество которых может увеличиваться многократно, достигая 1000 и более, но увеличения числа хромосом при этом не происходит. Хромосомы приобретают гигантские размеры.
специализированных клетках, например, в слюнных железах двукрылых. При политении выпадают все фазы митотического цикла, кроме репродукции первичных нитей хромосом. Клетки с политенными хромосомами у дрозофилы используются для построения цитологических карт генов в хромосомах.
(6) Хромосомы, (гр. chroma — цвет, soma — тело) могут находиться в двух структурно-функциональных состояниях: в конденсированном (спирализованном) и деконденсированном (деспирализованном). В иеделящейся клетке хромосомы не видны, обнаруживаются лишь глыбки и гранулы хроматина, так как хромосомы частично или полностью деконденсируются. Это их рабочее состояние. Чем более диффузен хроматин, тем интенсивнее в нем синтетические процессы. Ко времени деления клетки происходит конденсация (спирализация) хроматина и при митозе хромосомы хорошо видны.
Хроматин представляет собой комплекс ДНК и белков. В состав хроматина входят два типа белков: гистоны и негистоновые белки.
Мельчайшими структурными компонентами хромосом являются нуклео-протеидные фибриллы, они видимы лишь в электронный микроскоп. Хромосомные нуклеопротеиды — ДНП — состоят из ДНК и белков, преимущественно гистрнов. Молекулы гистонов образуют группы — нуклеосомы. Каждая нуклеосома состоит из 8 белковых молекул. Размер нуклеосомы около 8 нм. С каждой нуклеосомой связан участок ДНК, спирально оплетающий ее снаружи. В таком участке ДНК находится 140 нуклеотидов длиной около 50 нм, но благодаря спирализации длина ее укорачивается примерно в 5 раз (рис. 2.4).
В хроматине не вся ДНК связана с нуклеосомами, около 10—13 % ее длины свободно от них.
Существует представление, что хромосома состоит из одной гигантской фибриллы ДНП, образующей мелкие петли, спирали и разнообразные изгибы. По другим представлениям фибриллы ДНК попарно скручиваются, образуя хромонемы (гр. пета — струна), которые входят в комплексы более высокого порядка ■— также спирально закрученные полухроматиды. Пара по-лухроматид составляет хроматиду, а парахроматид — хромосому.
Каким бы ни было тонкое строение хромосомы, от степени скручивания нитчатых структур зависит ее длина. На различных участках одной и той же. хромосомы спирализация, компактность ее основных элементов неодинакова, с этим связана различная интенсивность окраски отдельных участков хромосомы.
Участки хромосомы, интенсивно воспринимай щие красители, получили название гетерохроматических (состоящих из гетерохроматина), они даже в период