Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Биология Щербатюк экзамен / лучистой сферы вокруг них

.doc
Скачиваний:
32
Добавлен:
18.06.2017
Размер:
36.35 Кб
Скачать

лучистой сферы вокруг них. С помощью электронного микроскопа установлено, что каждая центриоль — это цилиндрическое тельце длиной 0,3—0,5 мкм и диаметром около 0,15 мкм. Стенки цилиндра состоят из 9 параллельно расположенных трубочек. Ох. центриолей под углом отходят отростки, которые, по-видимому, являются дочерними центриолями.

Клеточный центр иногда занимает геометрический центр клетки (откуда происходит название органоида). Чаще же он оттеснен ядром или включениями к периферии, но обязательно располагается вблизи ядра по одной оси с центром ядра и центром клетки. Активная роль клеточного центра обнаруживается при делении клетки. Расходясь в противоположные стороны, центриоли формируют полюсы делящейся клетки. По-видимому, с его структурами связаны участки цитоплазмы, способные к активному движению. Образование новых центриолей происходит путем отпочковывания от родительской. Сначала образуется небольшой зачаток, который постепенно увеличивается и, наконец, полностью сформировавшись, отделяется от материнского органоида.

Микротрубочки — длинные тонкие цилиндры, имеющие диаметр около 24 нм. Оболочка микротрубочек трехслойная, толщиной около 5 нм. Микротрубочки формируются в результате полимеризации белка тубули-на. В делящихся клетках они образуют нити веретена, входят в состав ресничек и жгутиков подвижных клеток, т. е. структур, связанных с движением, и содержат фермент АТФ-азу. Кроме того, они играют опорную роль, являясь как бы цитоскелетом, поддерживающим определенную форму всей клетки и ее органоидов, а также принимают участие в транспорте воды, ионов и некоторых молекул.

Пластиды — органоиды, характерные для клеток растений и отсутствующие в клетках животных. Не имеют пластид также клетки грибов, бактерий и синезеленых водорослей.

Репродукция пластид происходит под контролем содержащейся в них ДНК. Пластиды ранних стадий развития — пропластиды — сходны с митохондриями, имеющими малое число крист. Предполагается, что пластиды имеют симбиотическое происхождение, про­изошли от синезеленых водорослей, вступивших в симбиоз с первичной эукариотической клеткой.

Цитоплазматические мембраны. При изучении различных клеток животных, растений -и бактерий всегда обнаруживается, что клеточные органоиды имеют в основе своей мембранные структуры. Они характерны для эндоплазматической сети* пластинчатого комплекс", оболочек » крист митохондрий, лизосом, вакуолей, пластид, ядерной оболочки и наружной клеточной мембраны.

Современная цитология рассматривает цитомембраны как один из основных компонентов клеточной органи­зации. Цитоплазматическая мембрана — сложная система, ответственная за основные процессы жизнедеятельности: разделение содержимого клетки на отсеки, или клеточные каналы (вакуоли, канальцы, цистерны), благодаря чему в клетке одномоментно могут

протекать различные, даже антагонистические, процессы; осуществление регуляции метаболических потоков; поддержание разности концентраций веществ (ионы, метаболиты) путем перемещения против градиента концентрации (активный перенос); создание разности электрических потенциалов; участие в процессах синтеза и катализа. Кроме того, мембраны являются стромой для точного размещения ферментов и, следовательно, обусловливают упорядоченность обменных реакций. Так, в эндоплазматической сети происходит синтез белков, жирных кислот и фосфолипидов. В митохондриях осуществляются цикл Кребса, окислительное фосфорилирование, окисление жирных кислот. В плазматической (наружной) мембране в связи с иммунологическими процессами могут протекать гликолитические реакции. Большинство заболеваний человека и животных связа­ны с нарушением в строении и функциях мембран.

Как показали комплексные цитофи-зические исследования, элементарная мембрана состоит из трех слоев, включающих в себя молекулы белков и липидов. Толщина каждого слоя около 2,5 нм. Часть белковых молекул обладает ферментативными свойствами. Каждая молекула липида имеет водорастворимую и водонерастворимую группы. В клеточных мембранах ли-пидные молекулы располагаются водо-нерастворимыми концами друг к другу, а водорастворимыми направлены к белковым молекулам. Единого мнения о молекулярной организации мембран нет. По одним представлениям белковые молекулы плотно прилегают друг к другу и представляют наружные слои, по другим — белки не образуют слоя, а в виде мозаики из глобул расположены неравномерно; при этом одни из них находятся только на поверхности, другие погружены в липидную фазу частично или полностью, иногда пронизывая ее насквозь. Большая часть белковых молекул не связана с липидными моле­кулами и только плавает между ними. Согласно третьей гипотезе, в состав мембран

кроме липидов и белков входят также молекулы гликолигтидов и гликопротеидов с разветвленными углеводными цепями. Эти разветвленные цепи на поверхности мембраны переплетаются друг с другом, образуя как бы каркас с вплетенными в него moj.2-кулами белков. Более того, углеводные цепи гликолипидов и гликопротеидов связаны с

плазматическая мембрана образует множество пальцевидных выступов— микроворсинок. Это значительно увеличивает всасывающую поверхность клеток, облегчая перенос веществ через наружную мембрану и их прикрепление к поверхности субстрата. Существует, по-видимому, несколько типов мембран, отличающихся по строению в ферментативными свойствами белков, образующих с липидами липопротеидные комплексы. С этим связаны неодинаковые функциональные свойства мембран различных органоидов и различных участков клетки. Так, мембраны митохондрий тонки (около 5 нм) и имеют глобулярную структуру; мембраны сетчатого аппарата толще (6—8 нм), содержат липид-ные и фосфорные молекулы. В мембранах находятся молекулы-рецепторы, благодаря чему они восприимчивы к биологически активным соединениям, например, гормонам.

Наружная или плазматическая мембрана (цитолемма или плазмолемма) ограничивает клетку от окружающей микросреды и благодаря наличию молекул-рецепторов обеспечивает целесообразные реакции клетки на изменения в окружающей ее среде. Она принимает непосредственное участие в процессах обмена, клетки со средой — поступлении веществ в клетку и выведе­нии их из нее. Она никогда не находится в состоянии покоя, совершая обычно волнообразные колебательные движения.

В тканях растений между соседними клетками образуются цитоплазматические мостики — плозмодесмы, через которые обеспечивается взаимосвязь лежащих рядом клеток. В растительных клетках цитоплазматическая мембрана снаружи покрыта клеточной оболочкой.

Поток информации. Благодаря наличию потока информации клетка, используя многовековой эволюционный опыт предков, создает организацию, соответствующую критериям живого, сохраняет и поддерживает эту организацию во времени, несмотря на меняющиеся условия внешней среды, передает ее в ряду поколений. В потоке информации участвуют ядро (ДНК хромосом), макромолекулы, переносящие информацию в цитоплазму (иРНК), цитоплазматический аппарат транскрипции (рибосомы и полисомы, тРНК, ферменты активации аминокислот). На завершающем этапе этого потока полипептиды, синтезированные на полисомах, приобретают третичную и четвертичную структуру и используются в качестве катализаторов или структур­ных блоков (рис. 7). Кроме ядерного генома, основного по объему заключенной информации, в эукариотических клетках функционируют также геномы митохондрий, а в зеленых растениях и хлоропластов.

Кодирование заключается в записл определенных сведений при помощи специальных символов с целью придать информации компактность, обеспечить ее