
- •1. Клетка как элементрнаяа един живого. Этапы становления представлений о клетке. Современные положения клеточной теории.
- •1838Г. – Теодор Ван Шванн – создал 2 положен клет теории.
- •2. Типы клеточной организации. Структурно-функциональные отличия прокариот и эукариот.
- •3. Ядро, его строение и биологическая роль.
- •4. Поверхностный аппарат ядра, его строение и функции. Строение ядерного порового комплекса. Импор и экспорт белков через ядерные поры.
- •5. Химический состав и структурная организация хроматина. Уровни компактизации. Хромосомы чел их строен и классификация.
- •6. Гиалоплазма. Органеллы, их классификация. Биологические мембраны.
- •7. Эндоплазматическая сеть, строение, виды эпс. Строен и функц рибосом.
- •8. Вакулярно-транспортная система, ее биологическая роль. Понятие секреторного пути. Комплекс гольджи.
- •9. Лизосомы, их строение, классификация и функции. Характеристика гетерофагического и аутофагического циклов лизосом
- •10. Митохондрии. Атф.
- •13. Общая характеристика какркасно-двигательной системы клетки. Биологическая роль цитоскелета
- •14. Микрофиламенты и промежуточные филаменты
- •15. Микротрубочки. Кинезины и денеиды. Центриоли
- •16. Общебиологическая характеристика поверхностного аппарат животной клетки, его строение и функции
- •17. Клеточная сигнализация и ее формы. Специфические сигнальные вещества и их характеристика.
- •19. Основные биологические механизмы транспорта веществ в клетку. Биологические основы транспорта малых молекул. Унипорт и копорт(антипорт и симпорт)
- •21. Клеточный цикл. Деление клетки. Митоз, его биологическое значение.
- •22. Мейоз, его биологическое значение. Характеристика редукционного и эквационного деления мейоза.
- •23. Биологич основы регуляции клеточного цикла. Циклины и циклинзависимые киназы
- •24. Клеточный цикл. Биологический контроль состояния наследственного материала в процессе клеточного цикла на примере белка р53
- •25. Половые клетки. Этапы гаметогенеза. Строение сперматозоида. . Классифик яйцеклеток по количеству питательных веществ и их распред в цитоплазме.
- •26. Формы бесполого и полового размнож у эукариот,их цитологические основы биологическое значение. Примеры.
- •27. Пол. Определение и предопределение пола.
- •28. ОРнтогенез. Его типы и периодизация.Эмбриональный период и его этапы.
- •29. Эмбриональный период онтогенеза. Спосбы дробления и типы бластул. Спосб гаструл.
- •30. Эмбриональныйл период онтогенеза. Способы формирования мезодермы. Строение нейрулы. Гисто и органогенез
- •31. Гибридологический метод. Законы Менделя, их цитологическое обоснование
- •32. Сцепленное наследование. Опыты Моргана. Хромосомная теория наследственности. Кроссинговер, его биологическое значение. Карты хромосом.
- •33. Человек как объект генетических исследований. Менделирующие признаки у человека, их характеристика на примере пигментной ксеродермы.
- •35. Характеристика х-сцепленного доминантного, рецессивного и у-сцепленного наследования признаков у человека.
- •36. Взаимодействие аллелей одного гена, их характеристика. Механизмывзаимодействия аллелей одного гена на примере наследования формы семян гороха. Множественный аллелизм.
- •37. Полигенное наследование. Взамодейств аллелей разных генов. Плеотропия.
- •38. Эпигенетическое наследование. Геномный импринтинг.
- •39. Цитоплазматическое наследование. Митоходриальное наследование
- •40. Закономерности наследования количественных признаков. Оценка соотносит роли наследственности и среды в проявл количств признаков. Понятие наследуемости.
- •41. Близнецовый метод, область применения.
- •42. Характеристика генома эукариот и особ генома человека. Строен эукриотич гена.
- •43. Характеристика генома прокариот. Понятие оперона.
- •44. Репликация днк. Особенности репликации у эукариот. Теломеры и теломеразы, их билогическое значение.
- •45. Транскрипция. Характеристика этапов инициации, элонгации и терминации. Особенности транскрипции у про- и эукариот.
- •46. Посттранскрипционный процессинг. Понятие об альтернативном сплайсинге. Строение зрелой м-рнк
- •47. Трансляция. Генетический код. Свойства генетического кода.
- •48. Регуляция активности генов у прокариот на примере лак-оперона
- •50. Общая схема регуляции генов у эукариот
- •51. Регуляция активности генову эукариот. Белов р53. Альтернативный сплайсинг.
- •52. Регуляция активности генов на уровне трансляции и посттрансляционных преобразований белков. Трансляционная репрессия на примере регуляции железом трансляции белков ферритина.
- •53. Изменчивость и её формы. Модиф и комбин изменч.
- •1) Ненаследственная. (та делится на средовую и модификационную)
- •54. Мутации, их свойства. Классификация мутаций
- •55. Генные мутации, их классификация, механизм возникновения.
- •56. Хромосомные мутации, их классификация и общая характеристика. Геномные мутации, их классификация, механизмы возникновения.
- •57. Природные антимутационные механизмы. Световая и темновая репарация.
- •58. Хромосомные болезни. Связанные с анеуплоидиями по аутосомам.
- •59. Хромосом болезни связанные с анеуплоидиями по половым хромосомам.
- •60. Генные болезни, их генетическая классификация и механизмы возникновения.
- •61. Характеристика наследственных болезней человека. Мультифакториальные болезни, доказательства их наследственной природы.
- •63. Генетический полиморфизм. Биологическое значение генетического полиморфизма. Генетический груз.
- •72. Основные направления эволюции кожных покровов хордовых.
- •73. Основные направления эволюции пищеварительной системы хордовых
- •74. Основные направления эволюции дыхательной системы хордовых
- •75. Основные направления эволюции кровеносной системы хордовых.
- •76. Основные направления эволюции выделительной системы хордовых
- •77. Иммунитет, его классификация. Понятие антигена и антигенной детерминанты. Клеточный иммунитет. Классификация т-лимфоцитов.
- •1) Неспецифический
- •2) Специфический
- •1)Антигены бактерий
- •80. Этапы антрогенеза, их зарактеристика. Пути и факторы эволюции человека. Систематическое положение человека в животном мире. Современные доказательства происхождения человека.
- •81. Формы взаимоотношений между организмами. Классификация паразитов (истинные, ложные, облигатные, факультативные, временные и постоянные, эндемичные и космополитные)
- •86. Жизненный цикл возбудителя малярии.
- •II. Спорогония.
- •87. Жизненный цикл возбудителя токсоплазмоза.
- •88. Возбудители лейшманиозов, их жизненные циклы.
- •1 .Лейшманиальная
- •2. Лептомонадная
- •89. Возбудители трипаносомозов, их жизненные циклы.
- •90. Возбудитель амебиаза, его жизненный цикл.
- •91. Возбудители лямблиоза и балантидиаза, их жизненные циклы.
- •92. Плоские черви – возбудители цестодозов.
- •1)Свиной цепень (вооруженный) (Taenia solium)
- •93. Плоские черви - возбудители трематодозов человека, их биология, жизненные циклы. Биологические основы профилактики трематодозов.
- •94. Круглые черви - возбудители нематодозов человека (геогельминтозов), их биология, жизненные циклы. Биологические основы профилактики нематодозов-геогельминтозов.
- •95. Круглые черви - возбудители нематодозов человека (биогельминтозов)
- •96. Комары
- •97. Клещи
- •98. Блохи
- •101. Цепи питания
27. Пол. Определение и предопределение пола.
ПОЛ - совокупность взаимно контрастирующих генеративных и связанных с ними признаков особей 1 вида. Особи с противоположными признаками либо могут непосредствен сливаться друг с другом (некоторые одноклеточные водоросли и жгутиконосцы), либо продуцируют гаметы разных типов, способны к слиянию друг с другом (подавляющ бол-во растений и животных) для обеспечения процесса ген рекомбинации.
В разных филетических линиях животных на смену гермафродитизму в процессе эволюции возникла раздельнополость, при которой каждая особь продуцирует гаметы лишь одного типа. у ряда одноклеточных организмов в процессе эволюции имеет место прогрессивная специализация гамет и полового процесса от изогамии через анизогамию к оогамии, происходящая парал-но и независимо в разных крупных таксонах. В диплоидном организме имеются 2 гомологичных набора одинаковых аутосом и в большинстве случаев пара гетеросом, или половых хромосом. Половые хромосомы определяют различие кариотипов особей разных полов у раздельнополых организмов. Пол, имеющий 2 одинаковые половые хромосомы, наз гомогаметным. Гетерогаметный пол имеет либо одну Х-хромосому (тип ХО), либо пару различающихся пол хромосом - X и V (тип XV). Половые хромосомы содержат гены, определяющие не только половые, но и другие признаки организма, которые наз сцепленными с полом. Различают У- половой хроматин (У-хроматин) и Х- половой хроматин (Х-хроматин). У-хроматин - структурный гетерохроматин . Х- хроматин, или тельце Барра,- интенсивно красящаяся структура, находящаяся в ядрах разных типов клеток самок, образован в норме 1й из 2х половых хромосом гомогаметного пола. Эта хромосома спирализована и вследствие этого неактивна. При наличии большего числа Х-хромосом такой инактивации подвергаются все, кроме одной Х-хромосомы.
У большинства раздельнопол животных пол развивающейся из яйцеклетки особи определяют хромосомные факторы. Это называется генетическим определением пола (сингамный способ определения пола).
Генетич опред пола противопоставляет фенотипическое (программный или эпиггамный способы опред пола).В этом случае все гаметы несут одинаковый набор хромосом. Экспрессия генов, отвечающих за дифференцировку определенного пола, происходит за счет внешнего воздействия.
Прогамное - определение пола у раздельнополых организмов осуществляется до слияния гамет (до оплодотворения). При материнском определении пола самки образуют яйца двух типов. Это происходит в случае циклического партеногенеза у коловраток, дафний, некоторых насекомых - тлей (у филлоксер в конце лета одни самки откладывают женские яйца, другие мужские).
Сингамное определение пола является наиболее обычным. В разных филетических линиях независимо возникают хромосомные механизмы определения пола в момент слияния гамет.
* Особый тип хромосомного определения пола встречается у некоторых кастовых насекомых, размножающихся парте но генетически. У перепончатокрылых (осы, пчелы, муравьи) матка способна контролировать оплодотворение своих яиц. Самцы (трутни) партеногенетически развиваются из неоплодотворенных яиц и являются гаплонтами. Диплоидные яйца развиваются в стерильных самок (рабочих особей), но при определенных условиях способны дать и плодовитых маток.
Эпигамное определение пола происходит после оплодотворения, под влиянием факторов окружающей среды, в которых развивается личинка. Так, у морской эхиуриды Bonnelia viridis длина самки до 7 см, ее хоботка-до 1 м, самца- 1-3 мм. Оплодотворенные яйцеклетки боннелии сначала развиваются в индифферентные в половом отношении личинки. При выращивании личинок поодиночке все они превращаются в самок, если же личинок выращивать в присутствии самок или в среде, содержащей экстракт их тканей, то все личинки превращаются в самцов. Также под влиянием феромонов происходит определение пола у морского блюдечка. Животные образуют плотные стопки, нижние превращаются в самок, верхние - в самцов; между ними гермафродитные особи.
Переопределение пола.
В норме хар-но для явления времен гермафродитизма.
У моллюсков класса Брюхоногие единственная гонада в течении жизни меняет пол. Межд фазами самки и самца существует кратковременная интерсексуальная стадия.
Для морского кольчатого червя фактором, определяющим смену пола, явл размер. Молодые особи явл самцами, а сформировав 15-20 сегментов становятся самками. При удаленмм задних сегментов регенерирующие животные снов станов самцами, пока не достигнут определенной длины.
Тропические лабиринтовые рыбы-чистильщики формируют «гаремы». В случае гибели самца доминирующая самка берет на себя его функции. В этом случае психические факторы определяют дифференцировку тканей семенников из эмбриональной закладки, сохраняющейся в составе гонад. Переопределение пола может происходить неоднократно в течение жизни.
Иногда возможно фенотипическое переопределение пола посредством пересадки гонад одного пола другому или введением в организм половых гормонов противоположного пола. В редких случаях особи с фенотипическим переопределением пола продуцируют гаметы, противоположные генотипическому полу.
У некоторых животных (например, амфибий) с хромосомным (генотипическим) определением пола, факторы внешней среды (температура, освещенность) могут влиять на развитие таким образом, что половой фенотип не соответствует хромосомному набору. Теоретически это возможно для всех позвоночных. Эмбриональная гонада — бисексуальна.