
- •31.Жизненный цикл эукариотной клетки. Структурно-функциональные изменения клетки в пресинтетический, синтетический и постсентетический периоды.
- •32.Митоз. Механизмы увеличения количества днк в клетке и их биологическое значение.
- •33.Биологические основы регуляции клеточного цикла. Циклины и циклинзависимые киназы. Митоз-стимулирующие и анафаза-стимулирующие факторы, их действие.
- •34.Биологический контроль состояния наследственного материала в процессе клеточного цикла на примере белка р53. Понятие апоптоза.
- •35. Мейоз его биологическое значение. Характеристика редукционного и эквационного делений мейоза.
- •36. Половые клетки. Этапы сперматогенеза и оогенеза их характеристика. Строение сперматозоида. Классификация яйцеклеток по количеству питательных веществ и их распределению в цитоплазме.
- •37. Формы бесполого и полового размножения у эукариот их цитологические основы и биологическое значение. Примеры.
- •38.Пол. Определение и переопределение пола.
- •40.Эмбриональный период онтогенеза. Способы дробления и типы бластул. Способы гаструляции, их связь со способами дробления и типами бластул. Примеры.
- •41. Эмбриональный период онтогенеза. Способы формирования мезодермы. Строение нейрулы. Гисто-и органогенез.
- •42. Гибридологический метод. Законы менделя их цитологическое обоснование.
- •43.Сцепленное наследование. Опыты моргана. Кроссинговер его биологическое значение. Карты хромосом. Хромосомная теория наследственности.
- •44.Человек как объект генетических исследований. Семейно-генеалогический метод, область его применения. Типы наследования признаков у человека.
- •45.Моногенное наследование. Взаимодействия аллелей одного гена их характеристика. Механизмы взаимодействия аллелей одного гена на примере наследования формы семян гороха. Множественный аллелизм.
- •46.Характеристика аутосомно-доминантного и аутосомно-рецессивного типов наследования признаков у человека. Пенетрантность и экспрессивность действия генов.
- •47.Характеристика х-сцепленного доминантного , рецессивного и у-сцепленного типов наследования признаков у человека.
- •48.Полигенное наследование. Взаимодействие аллелей разных генов их характеристика. Плейотропия.
- •49.Закономерности наследования количественных признаков. Оценка соотносительной роли наследственности и среды в проявлении количественных признаков. Понятие наследуемости. Близнецовый метод.
- •50.Эпигенетическое наследование. Геномный импритинг его характеристика.
- •51.Цитоплазматическое наследование. Митохондриальное наследование у человека. Примеры
- •52.Изменчивость. Ее формы. Характеристика модификационной и комбинативной изменчивости.
- •1) Ненаследственная. (та делится на средовую и модификационную)
- •53. Мутации их характеристика. Классификация.
- •54. Генные мутации их классификация. Механизм возникновения.
- •55.Хромосомные мутации их классификация. Общая характеристика. Геномные мутации их классификация
- •56. Природные антимутационные механизмы.
- •57.Медицинское значение мутаций. Понятие о наследственных болезнях человека. Биологические основы классификация наследственных болезней человека.
- •58.Хромосомные болезни. Биологические механизмы и их возникновение.
- •59.Генные болезни. Биологические механизмы их возникновения и генетическая классификация.
- •60.Понятие о наследственных энзимопатиях, механизмы их возникновения на примере фенилкетонурии и галактоземии.
34.Биологический контроль состояния наследственного материала в процессе клеточного цикла на примере белка р53. Понятие апоптоза.
жизненный цикл
М- митоз, G1 –пресинтетический,S– синтетический,G2 – постсинтетический,Gо – период пролиферативного покоя.
Большую часть клеточного цикла занимает интерфаза – подготовка к следующему делению. в интерфазе 3 периода – G1,S,G2.
У млекопитающих длительность S– периода интерфазы составляет 6-10 часов,G2 –периода 2-5 часов, митоза 1-1,5 часа,G1-периода около 11-13 часов.
В пресинтетическом(постметатический): интенсивно проходят роцессы синтеза. образ органеллы клетки. инетенсивно проходит метаболизм. и пост клетки
В синтетическом: происходит удвоение ДНК. синтезируются гистоны. кажд хромосома превращ в 2е хроматиды.
В постсинтетический (премитотический): интенсив проход процессы синтеза, проходит деление митохондрии и хлоропластов. Активно запасается АТФ. репликация цетриолей и начало образ веретена деления.
для большинства клеток многоклет организма хар-на стадия Gо (пролиферативного покоя).
В этой стадии клетки утрачивают способность к делению и приобретают специализацию за счёт синтеза определённых белков.
2 стадии: - первичная (деление не дифференцир клеток) и – вторичная (деление ранее дифференцир клеток).
Gо период заканчивается выходом в конецG1 периода вблизи точки рескрипции(-период когда клет цикла после которого клетка необратимо вовлекается в деление) с последующим делением клетки.
Центральную роль в остановке клеточного цикла играет белок р53,который служит транскрипционным фактором генов, отвечающих за остановку клеточного деления (например гена белка р21, являющегося ингибитором всех комплексов циклин – Цзк), а также генов, запускающих апоптоз.
Белок р53 синтезируется постоянно, но в обычных условиях его активность оказывается весьма низкой и лишь при нарушении при нарушениях структуры ДНК, хромосом микротрубочек, участвующих в формировании веретена деления, и других структур клетки, она значительно возрастает. Высокая активность белка р53 вызывает остановку клеточного цикла, либо гибель клетки.
активация белком р53 гена белка р21:белок р21 – связывается с комплексом циклин-Цзк и останавливает клеточный цикл.
Белок р53 активирует транскрипцию гена, кодирующего белок р 21.
Апоптоз (греч. αποπτωσις — опадание листьев) — явление программируемой клеточной смерти, сопровождаемой набором характерных цитологических признаков (маркеров апоптоза) и молекулярных процессов, имеющих различия у одноклеточных и многоклеточных организмов.
Апоптоз — форма гибели клетки, проявляющаяся в уменьшении ее размера, конденсации и фрагментациихроматина, уплотнении наружной и цитоплазматической мембран без выхода содержимого клетки в окружающую среду. Несмотря на то, что обычно более принципиальным является аспект программированности и активный характер гибели, чем сопутствующие ей морфологические изменения, чаще используется термин «апоптоз», вероятно, из-за его краткости.
35. Мейоз его биологическое значение. Характеристика редукционного и эквационного делений мейоза.
происход в жизн цикле организмов размножающихся половым путём, при мейозе из одной диплойдной клетки образ 4 гаплойдные клетки. Мейоз сост из 2х послед делений.
В мейоз вступает клетка с набором генетич материала 2n4c. в результ редукцион дел образ 2 гаплойдные клетки с двухроматидными хромосомами. В результате эквацион делен образ 4е гаплойдные клетки с однохроматидными хромосомами.
(1) редукционное (Первое мейотическое) деление.
профаза 1:Спирализация и уплотнение хромосом.(пахитема) Гомологичные хромосомы сближаются своими парными участками, то есть начинается процесс конъюгации.(зиготена) Хромососомные пары называются бивалентами. Каждый бивалент имеет 4 хроматиды. Гомологичные хромосомы переплетаются соответствующими участками хроматид (пахитема) (процесс кроссинговера). В результате кроссинговера происходит обмен гомологичными участками хромосом и "перемешивание" генов. Разрушается ядерная оболочка и формируется веретено деления.
(диплотена- происход фрагментация ядерн оболочки, к центромере кажд хромосомы присоед по одной микротрубочке веретена деления.;
диакинез – биваленты направлл к экватору клетки, гомологич хромосомы начин отделятся друг от друга в районе центромеры.)
метафаза 1:Завершение формирования веретена деления. В бивалентах от каждой центромеры идет только одна нить к одному из полюсов клетки. Биваленты устанавливаются в плоскости экватора веретена деления. образуя метафазную пластинку.
анафаза 1:Гомологичные хромосомы разделяются и расходятся к полюсам клетки. В результате этого процесса хромосомы разделяются на два гаплоидных набора, концентрирующихся у полюсов клетки. Каждый гаплоидный набор состоит из группы парных хроматид.
телофаза 1:У полюсов клетки собирается одиночный (гаплоидный) набор хромосом. Каждый вид хромосом представлен в этой группе одной хромосомой, состоящей из двух хроматид. Вокруг хромосом восстанавливаются ядерные оболочки.
выводы: после первого деления мейоза образуются группы гаплоидных наборов деойпых хромосом. Но набор ДНК является диплоидным, так как хромосомы двойные! В процессе же митоза к полюсам клетки расходятся хроматиды, которые после расхождения называются хромосомами. Между делениями мейоза удвоения ДНК не происходит!
(2) эквационное (второе мейотическое) деление:
профаза 2: В растительных клетках эта фаза отсутствует. У животных является непродолжительной. Разрушаются ядрышки и ядерные мембраны. Хроматиды укорачиваются и утолщаются. Формируется веретено деления.
метафаза 2: От центромеров каждой двойной хромосомы к полюсам клетки отходят нити веретена деления. Хромосомы выстраиваются по экватору веретена деления.
анафаза 2: Центромеры разделяются и каждая хроматида называется теперь хромосомой. Дочерние хромосомы растягиваются нитями веретена деления к полюсам.
телофаза 2:Хромосомы деспирализуются и растягиваются. Нити веретена деления разрушаются. Происходит удвоение центриолей. Вокруг каждой группы хромосом (гаплоидной!) образуется ядерная оболочка.
выводы: Далее следуем разделение цитоплазмы. В результате мейоза из каждой диплоидной клетки образуется 4 клетки сгаплоидным набором хромосом. Благодаря мейозу поддерживаетсяпостоянство хромосомного состава организмов при половом размножении. Другим значением мейоза является повышениебиологического разнообразия, которое возникает при «смешивании» участков гомологичных хромосом^ в результатекроссинговера.