- •Общие рекомендации
- •1878Г ф.Энгельс «Диалектика природы»
- •4.Происхождение жизни: гипотеза панспермии и абиогенного происхождения жизни. Главные этапы возникновения и развития жизни.
- •5.Типы клеточной организации. Строение про- и эукариотических клеток.
- •7.Иерархические уровни организации жизни. Проявления главных свойств жизни на различных уровнях её организации.
- •Уровни организации жизни
- •1.8. Проявление главных свойств жизни
- •На разных уровнях ее организации
- •Модель ступенчатой горки.
- •Клеточная теория
- •Современная клеточная теория
- •Клетка — элементарная единица живого
- •2.1. Клеточная теория
- •2.3.4. Внутриклеточный поток энергии
- •2.3.5. Внутриклеточный поток веществ
- •35.Закономерности наследования при моногибридном скрещивании.
- •36.Дигибридное и полигибридное скрещивание. Закон независимого комбинирования генов и его цитологические основы. Общая формула расщепления при независимом наследовании.
- •37.Множественные аллели. Наследование групп крови человека системы аво.
- •38.Взаимодействие неаллельных генов: комплементарность, эпистаз, полимерия, модифицирующее действие.
- •39.Хромосомная теория наследственности. Сцепление генов. Группы сцепления. Кроссинговер как механизм, определяющий нарушения сцепления генов.
- •Основные положения хромосомной теории наследственности
- •Сцепленное наследование
- •40.Наследование. Типы наследования. Особенности аутосомного, х-сцепленного и голандрического типов наследования. Полигенное наследование.
- •Норма реакции
- •47,Хуу – синдром двойного игрек (трисомия)
- •47,Ххх – синдром Сверхженщины.
- •45,Х0 синдром Шеришевкого-Тернера
- •Аномалии числа хромосом
- •[Править] Болезни, обусловленные нарушением числа аутосом (неполовых) хромосом
- •[Править] Болезни, связанные с нарушением числа половых хромосом
- •[Править] Болезни, причиной которых является полиплоидия
- •[Править] Нарушения структуры хромосом
- •Практическое значение закона Харди-Вайнберга
- •Признаки старения.
- •Гипотезы старения.
- •8.5. Старость и старение.
- •Смерть как биологическое явление
- •8.5.1. Изменение органов и систем органов в процессе старения
- •8.5.2. Проявление старения на молекулярном,
- •Субклеточном и клеточном уровнях
- •8.6. Зависимость проявления старения
- •От генотипа, условий и образа жизни
- •8.6.1. Генетика старения
- •У различных видов млекопитающих животных
- •8.6.2. Влияние на процесс старения условий жизни
- •8.6.3. Влияние на процесс старения образа жизни
- •8.6.4. Влияние на процесс старения эндоэкологической ситуации
- •8.7. Гипотезы,
- •Объясняющие механизмы старения
- •Классификация терминов (Вена, 1967 год).
- •История трансплантологии в России.
- •Ценогенез
- •Филэмбриогенез
- •Эволюции органов
- •13.3.1. Дифференциация и интеграция
- •В эволюции органов
- •13.3.2. Закономерности морфофункциональных преобразований органов
- •13.3.3. Возникновение и исчезновение
- •Биологических структур в филогенезе
- •13.3.4. Атавистические пороки развития
- •13.3.5. Аллогенные аномалии и пороки развития
- •И индивидуальном развитии.
- •Соотносительные преобразования органов
- •14.3.1. Ротовая полость
- •14.3.2. Глотка
- •14.3.3. Средняя и задняя кишка
- •14.4.1. Эволюция общего плана строения
- •Кровеносной системы хордовых
- •14.4.2. Филогенез артериальных жаберных дуг
- •14.5.1. Эволюция почки
- •14.5.2. Эволюция половых желез
- •14.5.3. Эволюция мочеполовых протоков
- •14.6.2.1. Гормоны
- •14.6.2.2. Железы внутренней секреции
- •14.2.1. Скелет
- •14.2.1.1. Осевой скелет
- •14.2.1.2. Скелет головы
- •14.2.1.3. Скелет конечностей
- •14.2.2. Мышечная система
- •14.2.2.1. Висцеральная мускулатура
- •14.2.2.2. Соматическая мускулатура
- •15.4.1. Расы и расогенез
- •15.4.3. Происхождение адаптивных экологических типов
- •Международные организации по охране природы при оон.
- •Особо охраняемые природные территории.
- •Классификация паразитизма
- •И паразитов
- •19.1.1. Класс Саркодовые Sarcodina
- •19.1.2. Класс Жгутиковые Flagellata
- •19.1.3. Класс Инфузории Infusoria
- •19.1.4. Класс Споровики Sporozoa
- •Биология наиболее распространенных филярий, паразитов человека
- •Tracheata Трахейнодышащие.
- •Вирусные заболевания.
- •Беклемишев, Владимир Николаевич
38.Взаимодействие неаллельных генов: комплементарность, эпистаз, полимерия, модифицирующее действие.
Комплементарность — такой тип взаимодействия, когда 2 неаллельных гена, попадая в генотип в доминирующем состоянии, совместно определяют появление нового признака, который каждый из них по отдельности не детерминирует. (R- розовидный гребень, P – гороховидный, rp – листовидный, RP – ореховидный)
Если присутствует один из пары – проявляется он.
Примером служат группы крови у человека.
Комплементарность может быть доминантная и рецессивная.
Для того чтобы человек имел нормальный слух, необходимо чтобы работали, согласовано многие гены, и доминантные и рецессивные. Если, хотя бы по одному гену он будет гомозиготен по рецессиву – слух будет ослаблен.
Эпистаз — маскирование генов одной аллельной пары генами другой.
Эпистаз (от греч. epi - над + stasis -- препятствие) -- взаимодействие неаллельных генов, при котором наблюдается подавление проявления одного гена действием другого, неаллелъного гена.
Ген, подавляющий фенотипические проявления другого, называется эпистатичным; ген, чья активность изменена или подавлена, называется гипостатичным.
Это обусловлено тем, что ферменты катализируют разные процессы клетки, Когда на одном метаболическом пути действуют несколько генов. Действие их должно быть согласовано во времени.
Механизм: если В выключится, он замаскирует действие С
В
одних случаях развитие признака при
наличии двух неаллельных генов в
доминантном состоянии рассматривают
как комплементарное взаимодействие, в
других
— неразвитие
признака, определяемого одним из генов
при отсутствии другого гена в доминантном
состоянии, расценивают как рецессивный
эпистаз; если же признак развивается
при отсутствии доминантного аллеля
неаллельного гена, а в его присутствии
не развивается, говорят о доминантном
эпистазе.
Полимерия — явление, когда различные неаллельные гены могут оказывать однозначное действие на один и тот же признак, усиливая его проявление.
Наследование признаков при полимерном взаимодействии генов. В том случае, когда сложный признак определяется несколькими парами генов в генотипе и их взаимодействие сводится к накоплению эффекта действия определенных аллелей этих генов, в потомстве гетерозигот наблюдается разная степень выраженности признака, зависящая от суммарной дозы соответствующих аллелей. Например, степень пигментации кожи у человека, определяемая четырьмя парами генов, колеблется от максимально выраженной у гомозигот по доминантным аллелям во всех четырех парах (Р1Р1Р2Р2Р3Р3Р4Р4) до минимальной у гомозигот по рецессивным аллелям (р1р1р2р2р3р3р4р4) (см. рис. 3.80). При браке двух мулатов, гетерозиготных по всем четырем парам, которые образуют по 24 = 16 типов гамет, получается потомство, 1/256 которого имеет максимальную пигментацию кожи, 1/256 — минимальную, а остальные характеризуются промежуточными показателями экспрессивности этого признака. В разобранном примере доминантные аллели полигенов определяют синтез пигмента, а рецессивные — практически не обеспечивают этого признака. В клетках кожи организмов, гомозиготных по рецессивным аллелям всех генов, содержится минимальное количество гранул пигмента.
В некоторых случаях доминантные и рецессивные аллели полигенов могут обеспечивать развитие разных вариантов признаков. Например, у растения пастушьей сумки два гена одинаково влияют на определение формы стручочка. Их доминантные аллели образуют одну, а рецессивные — другую форму стручочков. При скрещивании двух дигетерозигот по этим генам (рис. 6.16) в потомстве наблюдается расщепление 15:1, где 15/16 потомков имеют от 1 до 4 доминантных аллелей, а 1/16, не имеет доминантных аллелей в генотипе.
Если гены располагаются, каждый в своем отдельном локусе, но их взаимодействие проявляется в одном и том же направлении – это полигены. Один ген проявляет признак незначительно. Полигены дополняют друг друга и оказывают мощное действие – возникает полигенная система – т.е. система является результатом действия одинаково направленных генов. Гены подвергаются значительному влиянию главных генов, которых более 50. полигенных систем известно множество.
При сахарном диабете наблюдается умственная отсталость.
Рост, уровень интеллекта - определяются полигенными системами
Модифицирующее действие. Гены модификаторы сами по себе не определяют какой- то признак, но могут усиливать или ослаблять действие основных генов, вызывая таким образом изменение фенотипа. В качестве примера обычно приводится наследование пегости у собак и лошадей. Числового расщепления никогда не даётся, так как характер наследования больше напоминает полигенное наследование количественных признаков.
1919 год Бриджес ввел термин ген-модификатор. Теоретически любой ген может взаимодействовать с другими генами, а значит, и проявлять модифицирующее действие, но некоторые гены – модификаторы в большей степени. Они часто не имеют собственного признака, но способны усиливать или ослаблять проявление признака, контролируемого другим геном. В формировании признака кроме основных генов проявляют свое действие и модифицирующие гены.
Брахидактилия – может быть резкая или незначительная. Помимо основного гена, есть еще модификатор, который усиливает эффект.
Окраска млекопитающих – белая, черная + модификаторы.
