
- •1)Понятие термодинамической системы. Виды термодинамических систем.
- •2)Первое начало термодинамики
- •3)Макроэрги
- •4)Основные способы теплообмена организма.
- •5)Способы измерения теплопродукции
- •6)Внутренняя энергия любой системы состоит из двух разных частей:
- •8)Формулировка Пригожина:
- •9) Строение и свойства клеточных мембран
- •10)Пассивный транспорт
- •12) Активный транспорт
- •14) Механизм возникновения потенциала покоя
- •15) Понятие возбудимости и возбуждения. Вольт-амперные характеристики возбудимой и невозбудимой мембраны. Критический уровень мембранного потенциала. Пороговый раздражитель.
- •16) Реакции возбудимых и невозбудимых мембран на раздражители. Понятие градуальности. Закон все или ничего. Рефрактерность. Фазы рефрактерности.
- •17) Декрементное проведение возбуждения по невозбудимой мембране. Бездекрементное проведение возбуждения по возбудимой мембране. Сальтаторое проведение возбуждения по миелинизированным волокнам.
- •18) Функциональный межклеточный контакт, обеспечивающий переход возбуждения с одной клетки на другую, получил название синапса (от греч. Глагола "синапто" – смыкать).
- •19) Сердце выполняет в кровеносной системе роль четырехкамерного насоса, обеспечивающего движение крови по сосудам.
- •21) Общее представление о строении сердечно-сосудистой системы. Основные показатели гемодинамики.
- •22) Так как жидкость крайне мало сжимаема, то объем, протекающий за единицу времени через любое сечение трубки, одинаков, то есть объемная скорость q на протяжении всей трубки постоянна.
- •23) Идеальная жидкость – жидкость абсолютно несжимаемая и не имеющая внутреннего трения (вязкости).
- •24) Рассмотрим часто встречающийся случай ламинарного движения жидкости по трубке с круглым сечением под действием разности давлений на её концах.
- •25) Механическая работа, совершаемая сердцем, развивается за счет сократительной деятельности миокарда. Вслед за распространением возбуждения происходит сокращение миокардиальных волокон.
- •26) Среди артерий эластического типа важнейшую роль играет грудной отдел аорты.
- •27) Артериолы – предкапиллярные артерии. Это мелкие сосуды диаметром от 100 до 50 мкм.Обладают гладкомышечной стенкой, т.Е. Относятся к артериям мышечного типа.
- •28) Живой организм непрерывно получает разнообразную информацию как из внешней среды, так и от собственных органов и систем.
- •32) Рецепторный аппарат глаза человека. Различия между дневным и сумерочным зрением. Механизм цветового зрения.
- •33) . Основы световых измерений(фотометрия). Относительная спектральная эффективность. Система световых величин: световой поток, сила света, яркость, освещенность, единицы их измерения.
- •34) Лабораторная работа: построение частотной характеристики органа слуха человека на пороге слышимости.
- •35,36) Излучение эмв.
- •37) .Основные виды воздействия электромагнитных волн на организм человека.
- •38) Раздражающее действие электромагнитных полей низкой частоты. Биофизические механизмы электротравмы.
- •39) Тепловое действие высокочастотных электромагнитных волн. Использование теплового эффекта в физиотерапии. Увч-терапия и индуктотермия. Особенности теплового эффекта эмв свч и квч диапазонов.
- •40) Нетепловое ("специфическое") воздействие электромагнитных волн-различные паталогические р-ии на облучение эмв, не связанные с тепловым действием
- •41) Действие излучений оптического диапазона. Принцип устройства и действия лазеров. Особенности излучения лазеров. Применение лазеров в медицине.
- •42) Лабораторная работа: сравнение тепловых эффектов электромагнитного поля увч и свч-диапазонов в проводнике и диэлектрике.
1)Понятие термодинамической системы. Виды термодинамических систем.
Термодинамическая система — совокупность макроскопических тел, которые могут взаимодействовать между собой и с др. Телами (внешней средой) — обмениваться с ними энергией и веществом.
Термодинамические системы бывают трех видов:
Изолированные (нет обмена ни веществом, ни энергией с окружающей средой).
Закрытые (замкнутые) (нет обмена веществом с окружающей средой).
Открытые (есть и энерго- и массообмен с окружающей средой)
Энергию любой системы можно разделить на две части:
1) энергия, зависящая от положения и движения системы, как целого, и
2) энергия, определяемая движением и взаимодействием микрочастиц, образующих систему.
Вторую часть называют внутренней энергией системы u.
Внутренняя энергия u включает в себя:
Кинетическую энергию теплового движения частиц;
Потенциальную энергию, заключенную в химических связях;
Внутриядерную энергию.
В системах, химический состав которых в ходе энергетических преобразований остается неизменным, при вычислении внутренней энергии можно учитывать только энергию теплового движения частиц.
Примером такой системы является идеальный газ.
Свободная энергия есть та работа, которую могло бы совершить тело в обратимом изотермическом процессе, или свободная энергия есть максимальная возможная работа, которую может совершить система, обладая каким-то запасом внутренней энергии. Внутренняя энергия системы u равна сумме свободной (f) и связанной энергии(ts):
Связанная энергия – та часть внутренней энергии, которая не может быть превращена в работу, – это обесцененная часть внутренней энергии. При одной и той же температуре связанная энергия тем больше, чем больше энтропия. Таким образом, энтропия системы есть мера обесцененности ее энергии (т.е. Мера той энергии, которая не может быть превращена в работу). В термодинамике есть еще понятие – энергетическая потеря в изолированной системе:
Где tмин - температура окружающей среды.
Обратимый процесс (то есть равновесный) — термодинамический процесс, который может проходить как в прямом, так и в обратном направлении, проходя через одинаковые промежуточные состояния, причем система возвращается в исходное состояние без затрат энергии, и в окружающей среде не остается макроскопических изменений.
Обратимые процессы дают наибольшую работу. Бо́льшую работу от системы вообще получить невозможно. Это придает обратимым процессам теоретическую важность. На практике обратимый процесс реализовать невозможно. Он протекает бесконечно медленно, и можно только приблизиться к нему.
Необратимым называется процесс, который нельзя провести в противоположном направлении через все те же самые промежуточные состояния. Все реальные процессы необратимы. Примеры необратимых процессов: диффузия, термодиффузия, теплопроводность, вязкое течение и др. Переход кинетической энергии макроскопического движения через трение в теплоту, то есть во внутреннюю энергию системы, является необратимым процессом
Диссипация энергии (лат. Dissipatio — рассеяние) — переход части энергии упорядоченных процессов (кинетической энергии движущегося тела, энергии электрического тока и т. П.) В энергию неупорядоченных процессов, в конечном счёте — в теплоту. Системы, в которых энергия упорядоченного движения с течением времени убывает за счёт диссипации, переходя в другие виды энергии, например в теплоту или излучение, называются диссипативными
Если диссипация энергии происходит в замкнутой системе, то энтропия системы возрастает. Диссипация энергии в открытых системах, обусловленная процессами уноса энергии из системы, например в виде излучения, может приводить к уменьшению энтропии рассматриваемой системы при увеличении полной энтропии системы и окружающей среды.