Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ИХТ / ХТОСА / Технология энергоемких материалов(Юдин) / Еще некоторые материалы / Фаляхов / введение в технологию энергонасыщенных материалов - 2.doc
Скачиваний:
1419
Добавлен:
14.06.2017
Размер:
21.8 Mб
Скачать

7.3. Смесевые твердые ракетные топлива

Движение ракет осуществляется за счет реактивной силы, возникающей при отбросе массы газообразных продуктов, обра­зующихся при сгорании топлива в двигателе ракеты. В качестве топлива в твердотопливных двигателях используются смеси ти­па дымного, баллиститного пороха и различного состава смесе-вые ракетные топлива. Дымный и баллиститный пороха рас­смотрены в соответствующих разделах. Настоящий раздел по­священ знакомству со свойствами и основами технологии про­изводства смесевых твердых ракетных топлив (СТРТ).

Смесевое твердое ракетное топливо представляет многоком­понентную систему, основными составляющими которой явля­ются окислитель и горючее. Помимо основных компонентов, в СТРТ вводятся добавки различного назначения (катализаторы, стабилизаторы, ускорители горения, отвердители и т.п.).

Наиболее широкое применение в качестве окислителя в СТРТ нашел перхлорат аммония (ПХА), который разлагается с образованием только газообразных продуктов, выделяя при этом на каждую молекулу 2,5 атома активного кислорода.

Перхлорат аммония - белое кристаллическое вещество, ма­логигроскопичное, он безопасен в обращении в чистом виде, но в смеси с органическими соединениями представляет взрывча­тое вещество. ПХА химически не агрессивен к горюче-связующим. Применение ПХА позволило создать СТРТ с еди­ничным импульсом до 250-252 кг-с/кг.

Существенный шаг в разработке высокоэнергетического топ­лива был сделан после открытия в 1971 г. советскими учеными нового высокоактивного окислителя - аммониевой соли нитра-зовой кислоты [NH4*N(NO2)2]. На базе этого окислителя созданы более эффективные СТРТ, которые уже в 1983-1984 гг. были приняты на вооружение Советской Армии в составе ракетных комплексов стратегического назначения.

В качестве горючего в СТРТ используются высокомолеку­лярные соединения: смолы (эпоксидные, карбамидные, фенол-форм альдегидные и т.п.) и каучуки (натуральный, уретановый, бутадиеновый, бутадиен-стирольный, изобутадиеновый, тио-

кольный и др.).

Горючее в составе СТРТ выполняет двойную роль. Во-первых, это истинное горючее, которое под действием активного кислорода окислителя сгорает до газообразных продуктов СО, СОз и Н20(ПАР) и обеспечивает образование реактивного эффекта. Во-вторых, оно выполняет роль связки, которая связывает все составляющие в единую топливную массу и придает ей необхо­димые механические свойства (прочность, эластичность, упру­гость). В связи с выполняемой двойной ролью органическая со­ставляющая получила и двойное название: горюче-связующее

вещество (ГСВ).

Кроме органического, в состав СТРТ вводится металлическое горючее в виде порошкообразного алюминия (реже - магния). Основная роль металлического горючего сводится к повышению температуры и теплоты горения, способствуя тем самым нагреву до более высокой температуры газообразных продуктов сгора­ния органического горючего и повышая энергетику топлива. Однако при горении металлов образуются конденсированные частицы (оксиды металлов), что при значительном их содержа­нии отрицательно сказывается на общем объеме газообразных продуктов. Поэтому содержание металлического горючего должно находиться в определенных оптимальных пределах.

Обычно содержание различных функциональных состав­ляющих топлива находится в следующих пределах: 65-83% окислителя, 10-29% горюче-связующего (вместе с отвердителем), 5-18% металлического горючего и до 5% других добавок.

Смесевые ТРТ по своим свойствам относятся к взрывчатым материалам. Они способны детонировать при возбуждении мощным детонатором со скоростью детонации 2500-3000 м/с. '

По чувствительности к механическим воздействиям СТРТ нахо­дятся на уровне обычных бризантных ВВ (тротила - тетрила). Поэто­му при производстве и переработке СТРТ должны соблюдаться такие же правила безопасное, как и при работе с БВВ.

Высокие требования предъявляются к СТРТ по стабильности и, в первую очередь, по сохранению физико-механических свойств: эластичности, упругости топлива, отсутствию старения полимера. Появление при недостаточной стабильности трещин в массе заряда ТРТ, отслоений от корпуса, других явлений, вызы­вающих нарушение целостности топливного заряда, приводит к изменению баллистических свойств и, следовательно, к сниже­нию или потере боевых качеств ракеты.

Производство СТРТ имеет принципиальные отличия от ранее рассмотренных технологий ВМ. Дело в том, что топливная масса (ТМ) не подлежит хранению, поскольку в процессе изготовления в ее состав вводятся соответствующие отвердители, которые ог­раничивают время жизни массы в вязкотекучем состоянии. По­этому ТМ сразу же после приготовления должна заливаться в корпус ракетного двигателя (РД) или соответствующую форму при блочном комбинировании заряда РД.

Технологический процесс производства СТРТ включает сле­дующие основные стадии:

  • подготовку исходных твердых и жидких компонентов;

  • подготовку топливной массы (смешивание компонентов);

  • формование зарядов;

  • отверждение топливной массы;

  • контроль качества заряда СТРТ.

В связи с большим разнообразием ракет, отличающихся друг от друга размерами, конструкционными особенностями, такти­ческими параметрами, решаемыми задачами и целым рядом иных признаков, существуют соответственно и СТРТ различно­го рецептурного состава. Производство такого разнообразия СТРТ, при принципиальном сохранении общей технологической схемы, имеет существенные отличия по аппаратурному оформлению и способам выполнения отдельных операций. Наибо­лее унифицированы стадии подготовки компонентов (твер­дых и жидких), отверждения зарядов и контроля качества.

Стадия подготовки компонентов имеет две технологические ветви. По первой из них готовятся порошкообразные компонен­ты. Подготовка порошкообразных компонентов (окислитель и твердые добавки) сводится к сушке, рассеву, измельчению, сме­шиванию окислителя с добавками в требуемом соотношении. Это типовые операции и выполняются они при использовании обычного оборудования. Так, измельчение проводится в струй­ных (рис. 7.6), струйно-вихревых и других мельницах.

Струйные мельницы применяются для топкого и сверхтон­кого помола.

Материал подается в зону измельчения, куда через сопла встречными потоками поступает сжатый воздух. Частицы ма­териала, увлекаемые струями воздуха, в месте встречи воздуш­ных потоков (в помольной камере) сталкиваются с большой скоростью и измельчаются. Воздух в помольную камеру пода­ется с давлением 4-8 атм. Смесь измельченного материала с воздухом направляется в сепарационную камеру, размещенную на центральной трубе. Крупные частицы отделяются от мелких и по рукавам питания вновь поступают в зону измельчения. Мелкие через верхний штуцер идут в циклон для отделения от воздуха.

Для смешивания твердых компонентов используются ме­ханические корытообразные дифференциальные смесители со шнековыми мешалками (см. рис. 7.3) и вихревые смесите­ли (рис. 7.7), имеющие неподвижный барабан, внутри кото­рого вращается ротор в виде вала с закрепленными на нем по винтовой линии мешалками типа сдвоенных лемехов.

Вторая технологическая ветвь на стадии подготовки ком­понентов предназначена для получения смеси жидких ком­понентов с металлическими горючими и добавками (пласти­фикаторы и др).

Индивидуальные компоненты перед смешиванием сушатся, подвергаются вакуумированию, дозируются.

Смешивание компонентов при работе с легкоподвижным жидким горюче-связующим производится в обычном цилиндрическом аппарате с механической мешалкой. При работе с высоковязким горюче-связующим смешивание ведется в аппарате, состоящем из корпуса с рубашкой для обогрева и двух 2-образных меша­лок., вращающихся навстречу друг другу (см.рис. 7.4).

Подготовка топливной массы выполняется путем смешива­ния твердого и жидкого компонентов, полученных на предыду­щей стадии. Назначение стадии подготовки топливной массы заключается в получении однородной массы с требуемыми лить­евыми свойствами.

Смешивание компонентов при подготовке легкоподвижной ТМ проводится в смесителе контейнерного типа (см. рис. 7.1 а) или в смесителе с планетарно работающими мешалками (см. рис. 7.5).

Высоковязкие составы смешиваются в смесителях с Z-образ­ными мешанками (см. рис. 7.4.).

По окончании смешивания ТМ подвергается вакуумирова-нию с целью удаления газовых включений.

Формование зарядов про­водится различными способа­ми в зависимости от характера ТМ:

  1. ТМ малой вязкости и хорошей текучести формуется методом свободного литья (рис.7.8). В этом случае ТМ в камеру РД или форму поступа­ет под действием собственной массы.

  2. ТМ повышенной вязко­сти формуется методом литья под давлением, при котором масса подается в форму за счет избыточного давления, создаваемого сжатым газом (рис. 7.9).

3. ТМ, обладающая высокой вязкостью, нагнетается в форму или корпус РД шнек - прессом. После заполнения формы или корпуса РД производится от­верждение с целью перевода ТМ из жидкотекучего в твердо-упрутое состояние, присущее топливу.

В зависимости от химической природы связующего компонента процесс отверждения строится по двум вариантам. Для термопла­стичных горюче-связующих (например, типа битума) отверждение производится охлаждением по­ступившей со стадии мешки горячей ТМ.

Термореактивные полимеризующиеся связки и отверждаю-щиеся мономеры и олигомеры стадию мешки проходят при уме­ренных температурах, а отверждение идет в течение 60-70 часов в термокамерах при нагреве до 70-80 °С.

Полученные топливные блоки или заряды топлива в камерах РД первоначально подвергаются визуальному контролю, а затем контролю с помощью приборов, работающих на принципе излучения р-, у—или рентгеновских лучей.

Соседние файлы в папке Фаляхов