
- •Оглавление
- •Электрическая энергия, её особенности, область применения.
- •Электрическая цепь, назначения основных элементов.
- •Анализ простых электрических цепей методом эквивалентного сопротивления.
- •7. Метод контурных токов.
- •8. Использование метода узлового напряжения в расчете сложных цепей.
- •9. Работа и мощность постоянного тока. Нагрев проводов током. Выбор сечения проводов на нагрев.
- •10. Основные свойства и характеристики ферромагнитных материалов. Магнитный поток. Напряженность магнитного поля и магнитная индукция.
- •11. Действие магнитного поля на проводник с током. Принцип действия простейшего двигателя. Взаимодействие двух параллельных проводов с током.
- •12. Простейшие магнитные цепи и их назначение в электрических устройствах. Зависимость магнитного потока, намагничивающей силы и магнитного сопротивления.
- •13. Однородная и неоднородная магнитная цепь. Алгоритм расчета прямой и обратной задачи.
- •14. Влияние воздушного зазора на режим работы магнитной цепи при постоянной и переменной намагничивающей силе.
- •15. Вихревые токи. Их возникновение. Полезные и вредные действия. Меры борьбы с ними.
- •16. Закон электромагнитной индукции (две формулировки). Принцип действия простейшего генератора.
- •17. Однофазный переменный ток. Параметры и способы изображения синусоидальных величин. Мгновенные и действующие значения электрических величин.
- •18.Цепи синусоидального тока с отдельными элементами (активным, индуктивным и емкостным сопротивлением), векторные изображения этих величин.
- •1) Участок цепи, содержащий активное сопротивление (рис. 2.6).
- •2) Участок цепи, содержащий идеальную индуктивность (рис 2.9)
- •3) Участок цепи, содержащий ёмкость (рис. 2.12)
- •19. Последовательное соединение активного и индуктивного сопротивления. Реальная и идеальная катушка индуктивности.
- •20. Последовательное соединение активного и емкостного сопротивления, векторная диаграмма цепи.
- •21. Виды мощности, коэффициент мощности и способы его повышения.
- •22. Условия возникновения и векторная диаграмма резонанса напряжений.
- •23. Параллельное соединение активного сопротивления, индуктивности и емкости. Резонанс токов. Активная, реактивная и полная проводимость.
- •24. Трехфазная электрическая цепь, ее преимущества перед однофазной, область использования.
- •25. Получение трехфазной системы эдс. Соединение звездой в трех проводной линии электропередачи.
- •26. Понятие о смещение нейтрали, четырех проводная линия электропередачи.
- •27. Соединение треугольником. Расчет мощности в цепях трехфазного тока.
- •28. Классификация электроизмерительных приборов. Погрешности приборов и классы точности.
- •29. Устройств и принцип действия магнитоэлектрического прибора.
- •30. Устройство и принцип действия электромагнитного прибора.
- •31. Принцип действия электродинамического и индукционного приборов.
- •32. Измерение тока, напряжения, мощности и электрической энергии в цепях постоянного и переменного тока.
- •33. Назначение, устройство и принцип действия трансформатора. Структурная схема однофазного трансформатора.
- •34. Условное обозначение трансформаторов в радиосхемах и распределительных электросетях. Уравнение электрического состояния трансформатора.
- •35. Автотрансформаторы, электрическая схема, преимущества и недостатки.
- •36. Многообмоточные, однофазные и трехфазные трансформаторы.
- •37. Измерительные трансформаторы тока и напряжения.
- •38. Устройство, принцип действия и области применения трехфазных асинхронных двигателей.
- •39. Особенности асинхронного двигателя с короткозамкнутым ротором и с фазным ротором.
- •40. Способы пуска 3-х фазных асинхронных двигателей. Регулирование скорости вращения ротора.
- •41. Механическая характеристика 3-х фазного асинхронного двигателя. Реверсирование.
- •42. Устройство, принцип действия и область использования однофазных асинхронных двигателей.
- •43. Устройство и принцип действия машины постоянного тока. Назначение коллектора. Работа машины постоянного тока в режиме двигателя и в режиме генератора.
- •44. Коллекторные двигатели и их использование в бытовых приборах и инструментах.
16. Закон электромагнитной индукции (две формулировки). Принцип действия простейшего генератора.
1. Закон по Максвеллу читается следующим образом: индуктированная э.д.с. равна взятой с обратным знаком первой производной от потокосцепления по времени.
Знак минус в формулировке Максвелла позволяет математически точно определить направление индуктированной э.д.с. в соответствии с принципом Ленца.
Принцип Ленца (закон электромагнитной инерции) был сформулирован этим ученым в 1833 году: при изменении магнитного потока в электрической цепи индуктируется э.д.с. такого направления, что вызываемый ею ток стремится воспрепятствовать причине, вызывающей эту э.д.с., то есть изменению магнитного потока.
2.
В соответствии с равенством (21) закон электромагнитной индукции по Фарадею формулируется следующим образом:
э.д.с. е, индуктированная в проводнике, движущемся в неподвижном поле, прямо пропорциональна индукции магнитного поля В, длине проводника l, скорости проводника v и синуса угла α между векторами индукции и скорости.
Можно упрощенно так сформулировать этот закон: э.д.с. – это количество магнитных силовых линий, пересеченных проводником в единицу времени, считая, что точное вычисление самой э.д.с. проводится по формуле (21),
где е– э.д.с. в вольтах (В);
В– индукция магнитного поля в тесла (Тл);
l– длина проводника в метрах (м);
v– скорость в метрах в секунду (м/с).
Направление индуктированной э.д.с. определяется по правилу правой руки.
Генераторами называют электрические машины, преобразующие механическую энергию в электрическую. Принцип действия электрического генератора основан на использовании явления электромагнитной индукции, которое состоит в следующем. рассмотрим принцип действия простейшего генератора (рис. 132). Проводник в виде рамки из медной проволоки укреплен на оси и помещен в магнитное поле. Концы рамки присоединены к двум изолированным одна от другой половинам (полукольцам) одного кольца. Контактные пластины (щетки) скользят по этому кольцу. Такое кольцо, состоящее из изолированных полуколец, называют коллектором, а каждое полукольцо — пластиной коллектора. Щетки на коллекторе должны быть расположены таким образом, чтобы они при вращении рамки одновременно переходили с одного полукольца на другое как раз в те моменты, когда э.д.с, индуктируемая в каждой стороне рамки, равна нулю, т. е. когда рамка проходит свое горизонтальное положение.
С помощью коллектора переменная э.д.с, индуктируемая в рамке, выпрямляется, и во внешней цепи создается постоянный по направлению ток.
17. Однофазный переменный ток. Параметры и способы изображения синусоидальных величин. Мгновенные и действующие значения электрических величин.
Переме́нный ток — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.
Переменный ток, полученный при помощи вращения в магнитном потоке проводника или системы проводников, соединенных в одну катушку, называется однофазным переменным током.
Сила тока в отдельные моменты при изменении его по синусоиде носит название мгновенных значений тока.
Мгновенные значения тока i , напряжения u или ЭДС запишем в виде:
i=Im sin (ωt+ψi),
u=Um sin (ωt+ψu),
e=Em sin (ωt+ψe).
Аргумент синуса (ωt +ψ) называется фазой. Угол ψ равен фазе в начальный момент времени t =0 и поэтому называется начальной фазой.
Угловая частота ω связана с периодом T и частотой f =1/Т формулами:
ω = 2π/Т или ω = 2πf.
Частота f, равная числу колебаний в 1с, измеряется в герцах (Гц).
Наибольшее по величине мгновенное значение однофазного переменного тока при изменении его по синусоиде называется амплитудой.
Время, в течение которого индуктированная э. д. с. (или сила тока) проходит весь цикл изменений, называется периодом Т.
Величина, обратная периоду, называется частотой (f). Иначе говоря, частота переменного тока есть число периодов в единицу времени, т. е. в секунду.
Действующее значение переменного тока - это значение постоянного тока, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при переменном токе.
Действующее значение переменного тока равно такому постоянному току, который, проходя через то же сопротивление, что и переменный ток, за то же время выделяет такое же количество энергии.
I = Im / √2
Аналогично зависимость между действующим и амплитудным значениями для напряжения U и Е имеет вид: U = Um / √2,E= Em / √2
Синусоидальные электрические величины могут быть представлены различными способами.
1. Аналитически -
как тригонометрические функции
времени;
2. Графически -
как проекция вектора ,
вращающегося с угловой скоростью
(радиан
в секунду), на вертикальную ось. Изменяя
аргумент
от
нуля до
,
рассмотрим проекцию
на
вертикальную ось и строим график
функцииe(t) в
координатах
или
(t,
e).
3. Векторный способ
изображения состоит в замещении
нескольких синусоидальных функций
4. Комплексными числами. Синусоидально изменяющуюся электрическую величину можно представить комплексным числом и изобразить в виде вектора на комплексной плоскости с прямоугольной системой координат.
Комплексное число состоит из действительной (вещественной) и мнимой частей. По оси ординат откладывают мнимую часть комплексного числа, а ось обозначают +j; по оси абсцисс – действительную часть комплексного числа, а ось обозначают +1.
На комплексной плоскости синусоидальная величина может изображаться в виде модуля и аргумента или в виде двух составляющих вектора, направленных по действительной и мнимой осям.