Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
зачет.docx
Скачиваний:
200
Добавлен:
13.06.2017
Размер:
3.85 Mб
Скачать

10. Основные свойства и характеристики ферромагнитных материалов. Магнитный поток. Напряженность магнитного поля и магнитная индукция.

Различные магнитные свойства материалов наглядно характеризуется зависимостью B=f(H), графическое изображение которой называют кривой намагничивания. Для неферромагнитных материалов зависимость B=f(H) является линейной, а для ферромагнитных – существенно нелинейной.

Характерным свойством ферромагнетиков является гистерезис. Явление заключается в том, что индукция ферромагнетика В зависит не только от напряженности намагничивающего поля в данный момент, но и от предварительного намагничивания образца. Поэтому вообще нельзя указать, какая индукция ферромагнетика соответствует данному значению напряженности намагничивающего поля, если неизвестно, в каком состоянии он до этого находился. То же, естественно, относится к значениям магнитной проницаемости.

Участок ОС кривой на графике характеризует ход первоначальной намагниченности, т. е. случая, когда ферромагнетик был сначала нагрет выше точки Кюри и тем самым полностью размагничен, а затем охлажден и подвергнут намагничиванию. Совершенно иной вид будет иметь кривая намагничения, если ферромагнетик был уже ранее намагничен.

Изготовим сердечник в форме тороида из размагниченного ферромагнетика и обмотаем его равномерно проводником. Меняя силу тока в обмотке, мы тем самым меняем напряженность намагничивающего поля. Пусть напряженность поля возрастет до значения Hs. Этому значению поля соответствует индукция насыщения, равная Bs. Будем уменьшать силу тока в обмотке, уменьшая тем самым напряженность намагничивающего поля. Мы убедимся, что индукция сердечника в процессе размагничивания остается все время большей, чем в процессе намагничивания.

Когда сила тока в обмотке станет равной нулю, исчезнет и намагничивающее поле. Но индукция ферромагнетика не обратится в нуль - сердечник сохранит некоторую остаточную индукцию Вr. И только в том случае, когда по обмотке будет пропущен ток обратного направления и возникнет поле с напряженностью - Нc, индукция сердечника обратится в нуль. Напряженность размагничивающего поля Нc называют коэрцитивной силой.

Если увеличивать в обмотке силу тока обратного направления, то индукция магнитного поля в сердечнике будет возрастать тоже в противоположном направлении до насыщения. Далее, при уменьшении силы тока процесс размагничивания повторится. Кривую, описывающую этот процесс, называют петлей гистерезиса.

Магнитный поток, или поток вектора магнитной индукции − скалярная величина, которая количественно описывает прохождение магнитного поля через некоторую поверхность. Обозначается буквой Ф.

В однородном магнитном поле B через плоскую поверхность площади S магнитный поток определяется как

Ф=BS⋅cosα,

где B=|B| модуль вектора магнитной индукции, α угол между вектором B и нормалью n к поверхности.

Напряженностью магнитного поля называют векторную физическую величину, направленную по касательной к силовым линиям поля, являющуюся характеристикой магнитного поля, равную:

где H– вектор магнитной индукции, Гн/м(Н/А2)- магнитная постоянная,J– вектор намагниченности среды в исследуемой точке поля.

Для магнитного поля в вакууме напряженность магнитного поля определяется выражением:

В изотропной среде формула (1) преобразуется к виду:

Вектор магнитной индукции всегда направлен по касательной к магнитной линии

Расчетная формула:

где F- сила, действующая со стороны магнитного поля на проводник с током ( H ); I - сила тока в проводнике ( A ); l - длина проводника ( м ). Единица измерения индукции магнитного поля в СИ: [ B ] = 1Тл ( тесла).

Соседние файлы в предмете Электротехника