- •Оглавление
- •Электрическая энергия, её особенности, область применения.
- •Электрическая цепь, назначения основных элементов.
- •Анализ простых электрических цепей методом эквивалентного сопротивления.
- •7. Метод контурных токов.
- •8. Использование метода узлового напряжения в расчете сложных цепей.
- •9. Работа и мощность постоянного тока. Нагрев проводов током. Выбор сечения проводов на нагрев.
- •10. Основные свойства и характеристики ферромагнитных материалов. Магнитный поток. Напряженность магнитного поля и магнитная индукция.
- •11. Действие магнитного поля на проводник с током. Принцип действия простейшего двигателя. Взаимодействие двух параллельных проводов с током.
- •12. Простейшие магнитные цепи и их назначение в электрических устройствах. Зависимость магнитного потока, намагничивающей силы и магнитного сопротивления.
- •13. Однородная и неоднородная магнитная цепь. Алгоритм расчета прямой и обратной задачи.
- •14. Влияние воздушного зазора на режим работы магнитной цепи при постоянной и переменной намагничивающей силе.
- •15. Вихревые токи. Их возникновение. Полезные и вредные действия. Меры борьбы с ними.
- •16. Закон электромагнитной индукции (две формулировки). Принцип действия простейшего генератора.
- •17. Однофазный переменный ток. Параметры и способы изображения синусоидальных величин. Мгновенные и действующие значения электрических величин.
- •18.Цепи синусоидального тока с отдельными элементами (активным, индуктивным и емкостным сопротивлением), векторные изображения этих величин.
- •1) Участок цепи, содержащий активное сопротивление (рис. 2.6).
- •2) Участок цепи, содержащий идеальную индуктивность (рис 2.9)
- •3) Участок цепи, содержащий ёмкость (рис. 2.12)
- •19. Последовательное соединение активного и индуктивного сопротивления. Реальная и идеальная катушка индуктивности.
- •20. Последовательное соединение активного и емкостного сопротивления, векторная диаграмма цепи.
- •21. Виды мощности, коэффициент мощности и способы его повышения.
- •22. Условия возникновения и векторная диаграмма резонанса напряжений.
- •23. Параллельное соединение активного сопротивления, индуктивности и емкости. Резонанс токов. Активная, реактивная и полная проводимость.
- •24. Трехфазная электрическая цепь, ее преимущества перед однофазной, область использования.
- •25. Получение трехфазной системы эдс. Соединение звездой в трех проводной линии электропередачи.
- •26. Понятие о смещение нейтрали, четырех проводная линия электропередачи.
- •27. Соединение треугольником. Расчет мощности в цепях трехфазного тока.
- •28. Классификация электроизмерительных приборов. Погрешности приборов и классы точности.
- •29. Устройств и принцип действия магнитоэлектрического прибора.
- •30. Устройство и принцип действия электромагнитного прибора.
- •31. Принцип действия электродинамического и индукционного приборов.
- •32. Измерение тока, напряжения, мощности и электрической энергии в цепях постоянного и переменного тока.
- •33. Назначение, устройство и принцип действия трансформатора. Структурная схема однофазного трансформатора.
- •34. Условное обозначение трансформаторов в радиосхемах и распределительных электросетях. Уравнение электрического состояния трансформатора.
- •35. Автотрансформаторы, электрическая схема, преимущества и недостатки.
- •36. Многообмоточные, однофазные и трехфазные трансформаторы.
- •37. Измерительные трансформаторы тока и напряжения.
- •38. Устройство, принцип действия и области применения трехфазных асинхронных двигателей.
- •39. Особенности асинхронного двигателя с короткозамкнутым ротором и с фазным ротором.
- •40. Способы пуска 3-х фазных асинхронных двигателей. Регулирование скорости вращения ротора.
- •41. Механическая характеристика 3-х фазного асинхронного двигателя. Реверсирование.
- •42. Устройство, принцип действия и область использования однофазных асинхронных двигателей.
- •43. Устройство и принцип действия машины постоянного тока. Назначение коллектора. Работа машины постоянного тока в режиме двигателя и в режиме генератора.
- •44. Коллекторные двигатели и их использование в бытовых приборах и инструментах.
10. Основные свойства и характеристики ферромагнитных материалов. Магнитный поток. Напряженность магнитного поля и магнитная индукция.
Различные магнитные свойства материалов наглядно характеризуется зависимостью B=f(H), графическое изображение которой называют кривой намагничивания. Для неферромагнитных материалов зависимость B=f(H) является линейной, а для ферромагнитных – существенно нелинейной.

Характерным свойством ферромагнетиков является гистерезис. Явление заключается в том, что индукция ферромагнетика В зависит не только от напряженности намагничивающего поля в данный момент, но и от предварительного намагничивания образца. Поэтому вообще нельзя указать, какая индукция ферромагнетика соответствует данному значению напряженности намагничивающего поля, если неизвестно, в каком состоянии он до этого находился. То же, естественно, относится к значениям магнитной проницаемости.
Участок ОС кривой на графике характеризует ход первоначальной намагниченности, т. е. случая, когда ферромагнетик был сначала нагрет выше точки Кюри и тем самым полностью размагничен, а затем охлажден и подвергнут намагничиванию. Совершенно иной вид будет иметь кривая намагничения, если ферромагнетик был уже ранее намагничен.
Изготовим сердечник в форме тороида из размагниченного ферромагнетика и обмотаем его равномерно проводником. Меняя силу тока в обмотке, мы тем самым меняем напряженность намагничивающего поля. Пусть напряженность поля возрастет до значения Hs. Этому значению поля соответствует индукция насыщения, равная Bs. Будем уменьшать силу тока в обмотке, уменьшая тем самым напряженность намагничивающего поля. Мы убедимся, что индукция сердечника в процессе размагничивания остается все время большей, чем в процессе намагничивания.
Когда сила тока в обмотке станет равной нулю, исчезнет и намагничивающее поле. Но индукция ферромагнетика не обратится в нуль - сердечник сохранит некоторую остаточную индукцию Вr. И только в том случае, когда по обмотке будет пропущен ток обратного направления и возникнет поле с напряженностью - Нc, индукция сердечника обратится в нуль. Напряженность размагничивающего поля Нc называют коэрцитивной силой.
Если увеличивать в обмотке силу тока обратного направления, то индукция магнитного поля в сердечнике будет возрастать тоже в противоположном направлении до насыщения. Далее, при уменьшении силы тока процесс размагничивания повторится. Кривую, описывающую этот процесс, называют петлей гистерезиса.
Магнитный поток, или поток вектора магнитной индукции − скалярная величина, которая количественно описывает прохождение магнитного поля через некоторую поверхность. Обозначается буквой Ф.
В однородном магнитном поле B через плоскую поверхность площади S магнитный поток определяется как
Ф=B⋅S⋅cosα,
где B=|B| модуль вектора магнитной индукции, α угол между вектором B и нормалью n к поверхности.
Напряженностью магнитного поля называют векторную физическую величину, направленную по касательной к силовым линиям поля, являющуюся характеристикой магнитного поля, равную:
![]()
где
H–
вектор магнитной индукции,
Гн/м(Н/А2)- магнитная постоянная,J–
вектор намагниченности среды в исследуемой
точке поля.
Для магнитного поля в вакууме напряженность магнитного поля определяется выражением:
![]()
В изотропной среде формула (1) преобразуется к виду:
![]()
Вектор магнитной индукции всегда направлен по касательной к магнитной линии
Расчетная формула:
где
F- сила, действующая со стороны магнитного
поля на проводник с током ( H );
I - сила
тока в проводнике ( A );
l - длина проводника
( м ).
Единица измерения индукции
магнитного поля в СИ:
[ B ] = 1Тл ( тесла).
