
- •1.Понятие матрицы…
- •2.Линейная зависимость …
- •3.Определитель квадратной матрицы.
- •4.Алгебраическое дополнение.
- •6.Теорема Кронекера-Капели:
- •10.Понятие о геометрическом векторе. Линейные операции над векторами и их свойства.
- •11.Понятие вектора. Линейная зависимость и независимость системы векторов и связанные с этими понятиями теоремы. Коллинеарные и компланарные вектора.
- •12. Понятие векторного пространства и его размерности.
- •13.Базис векторного пространства и его размерности.
- •14.Понятие об аффинной системе координат. Координаты точки.
- •20. Смешанное произведение векторов и его свойства.
- •21. Векторное произведение 2х векторов.
- •23.Переход от одной прямоугольной системы координат к другой на плоскости и в пространстве. Углы Эйлера.
- •24.Понятие о уравнении кривой на плоскости. Уравнение прямой.
- •25.Различные уравнения прямых на плоскости. Взаимное расположение прямых.
- •26.Нормированное уравнение прямой, на плоскости. Взаимное расположение прямых.
- •27.Уравнение пучка прямых на плоскости.
- •28.Приведение общего уравнения кривой второго порядка к каноническому виду.
- •29.Классификация кривых второго порядка и их канонические уравнения.
- •30.Эллипс и его св-ва:
- •31. Гипербола и ее св-ва.
- •32. Парабола и ее свойства.
- •33.Общее геометрическое свойство кривых второго порядка(директриса и эксцентриситет). Уравнение этих кривых в полярной системе координат.
- •42.Исследовавание поверхностей второго порядка по их каноническим уравнениям.
- •43.Цилиндрические поверхности.
- •44.Конические поверхности.
- •10. Общее уравнение плоскости.
- •14. Прямая, как пересечение плоскостей. Нахождение начальной точки и направляющего вектора прямой.
- •16. Взаимное расположение прямой на плоскости.
- •17. Общее ур-е прямой линии на плоскости. Его частные случаи.
- •20,21. Угол м/ду прямыми на плоскости. Условия || и.
- •22. Расстояние от точки до прямой на плоскости и до плоскости в пространстве.
- •23. Кривые линии 2-го порядка.
1.Понятие матрицы…
Матрицей называется прямоугольная таблица из чисел, содержащая некоторое количество m строк и некоторое количество n столбцов.
Матрицы равны между собой, если равны все их соответствующие элементы.
Матрица, у которой число строк и столбцов равно – называется квадратной.
Матрица, все элементы которой, кроме элементов главной диагонали равны нулю, называется диагональной.
Диагональная матрица, у которой все элементы главной диагонали равны 1, называется единичной. Обозначается буквой Е.
Матрица, у которой все элементы по одну сторону от главной диагонали равны нулю, называется треугольной.
Матрица, у которой все элементы равны нулю, называется нулевой.
1)Умножение матрицы на число: условий нет, умножить на число можно любую матрицу. Произведением матрицы А на число называется матрица В, равная А, каждый элемент которой находится по формуле: bij = x aij. Для того, чтобы умножить матрицу на число необходимо умножить на это число каждый элемент матрицы.
2)Сложение 2-х матриц: условие - складывать можно только матрицы одинакового размера. Суммой 2-х матриц А и В называется матрица С=А+В, каждый элемент которой находится по формуле Сij=aij+bij. Для того, чтобы сложить 2 матрицы, необходимо складывать между собой элементы, стоящие на одинаковых местах.
3)Вычитание 2-х матриц: операция аналогична сложению.
4)Умножение 2-х матриц: умножение А на В возможно тогда и только тогда, когда число столбцов А равно числу строк В; произведением матрицы А размера mxk на матрицу В размера kxn называется матрица С размера mxn, каждый элемент которой равен сумме произведений элементов i-ой строки матрицы А на соответствующие элементы j-ого столбца матрицы В.
5)Возведение в степень: возводить в степень можно только квадратные матрицы; целой положительной степенью квадратной матрицы Аm называется произведение m-матриц, равных А.
6)Транспонирование: условий нет; транспонирование-операция, в результате которой строчки и столбцы матрицы меняются местами с сохранением порядка элемента, при этом элементы главной диагонали остаются на своих местах.
A + (B + C) = (A + B) + C
A + B = B + A
A(BC) = (AB)C
A(B + C) = AB + AC
(B + C)A = BA + CA
(AT)T = A
(A * B)T = BT * AT
2.Линейная зависимость …
Система из п столбцов является линейно независимой, если равенство их линейной комбинации возможно лишь в случае, когда все весовые коэффициенты – нули.
Свойства:
Дополнения к линейно зависимой системе любых других столбцов приводит к ассиметричной линейной зависимости.
Исключение из линейно-независимой системы любых столбцов даёт независимую подсистему.
Необходимое и достаточное условие равенства нулю определителя матрицы:
Для того чтобы определитель матрицы был равен нулю необходимо и достаточно чтобы хотя бы один из его столбцов или строк был линейной комбинацией остальных, или чтобы столбцы, или строки были линейно зависимы.