
- •Перечень вопросов для экзамена по курсу Теория информационных процессов и систем
- •Основные задачи теории информационных систем.
- •Основные понятия теории систем
- •Понятие информации
- •Модель и цель системы
- •Управление системами
- •Информационные динамические системы
- •Классификация и основные свойства единиц информации
- •Системы управления
- •Реляционная модель данных
- •Виды информационных систем
- •Классификация информационных систем
- •Технические, биологические и др. Системы
- •Детерминированные и стохастические системы
- •Открытые и закрытые системы
- •Хорошо и плохо организованные системы
- •Классификация систем по сложности
- •Модели сложных систем управления
- •Понятие «сложность»
- •Вычислительная сложность.
- •Структурная сложность
- •Иерархия
- •Многообразие систем
- •Динамическая сложность
- •Случайность в сравнении с детерминизмом и сложностью
- •Шкалы времени
- •Закономерности систем
- •Целостность
- •Коммуникативность
- •Иерархичность
- •Эквифинальность
- •Историчность
- •Закон необходимого разнообразия
- •Закономерность осуществимости и потенциальной эффективности систем
- •Закономерность целеобразования
- •Системный подход и системный анализ
- •Уровни представления информационных систем
- •Методы и модели описания систем
- •Качественные методы описания систем
- •Количественные методы описания систем
-
Структурная сложность
Сущность понятия структурной сложности связана с тем, что компоненты (подсистемы) СУ связаны между собой запутанным. Трудным для непосредственного восприятия образом. Это типичный пример структурной сложности. При этом имеем дело только со структурой коммуникационных каналов и схемой взаимодействия компонент СУ, пренебрегая динамическими аспектами. Однако и в этом случае необходимо принять во внимание еще и другие аспекты связанности структуры.
-
Иерархия
Некоторые специалисты считают, что определяющим фактором при решении вопроса о сложности СУ является ее иерархическая организация. Число уровней иерархии в системе может служить приблизительной мерой ее сложности.
-
Схема связности
Важным аспектом сложности является способ, которым подсистемы объединяются в единое целое. Структура связности СУ определяет потоки передачи информации в структуре и ограничивает воздействия, которые может оказать одна часть системы на другую.
Например, если имеется система, заданная с помощью линейного ДУ вида
Ů=AU, U(0)=U0
где A – матрица размера nxn, то заполненность матрицы A (ее структура связности) в определенной мере отражает сложность процесса. Данный пример иллюстрирует, что большая размерность и высокая сложность СУ могут быть слабо коррелированы.
Порядок n СУ может быть очень большой, однако если A имеет простую структуру (диагональная), то уравнение представляет СУ малой сложности, в том смысле, что ее поведение легко предсказать и понять. Сложность может быть охарактеризована тщательным исследованием схем взаимодействия подсистем (схем связности), а не ее порядком.
-
Многообразие систем
Принцип необходимого многообразия Эшби, согласно которому многообразие выходных сигналов системы может быть достигнуто только с помощью достаточного многообразия входных воздействий также имеет непосредственное отношение к сложности СУ.
Можно назвать такую способность системы реализовать многие различные типы поведения – сложность управления, т. к. этот аспект сложности отражает меру способностей преобразовывать многообразие входных сигналов в многообразие выходных.
Принцип необходимого многообразия гласит, что
Общее многообразие >= Многообразие возмущений
в поведении СУ Многообразие управлений
Смысл этого утверждения таков: если необходимо, что СУ реализовала заданный вид поведения вне зависимости от внешних помех, то подавить многообразие в ее поведении можно, только увеличив множество управлений.
Другими словами – многообразие может быть разрушено только многообразием. Это кибернетический аналог второго закона термодинамики.
-
Динамическая сложность
Динамическая сложность – это сложность предсказания поведения системы.
Динамическая сложность является результатом взаимодействий в системе с временными задержками. Задержки времени между принятием решения и результатами замедляют процесс накопления опыта, проверки гипотез и совершенствования системы.
Она возникает тогда, когда меняются связи между элементами. Например, в коллективе сотрудников фирмы может время от времени меняться настроение, поэтому существует множество вариантов связей, которые могут устанавливаться между ними. Попытку дать исчерпывающее описание таким системам можно сравнить с поиском выхода из лабиринта, который полностью изменяет свою конфигурацию, как только вы меняете направление движения. Примером могут служить шахматы.