
- •Список вопросов к экзамену по дисциплине ос 2013/14 уч. Год
- •Определение ос. Назначение и функции операционной системы.
- •Место ос в структуре вычислительной системы.
- •Понятие ресурса. Управление ресурсами в вычислительной системе.
- •Критерии эффективности и классы ос.
- •Эволюция ос.
- •Современный этап развития ос.
- •Функциональные компоненты ос персонального компьютера.
- •Требования, предъявляемые к современным ос.
- •Классификации ос.
- •Системные вызовы.
- •Архитектура ос. Ядро и вспомогательные модули.
- •Классическая архитектура ос. Монолитные и многослойные ос.
- •Микроядерная архитектура ос.
- •Многослойная модель ядра ос.
- •Функции ос по управлению процессами.
- •Процессы и потоки.
- •Состояния потока.
- •Планирование и диспетчеризация потоков, моменты перепланировки.
- •Алгоритм планирования, основанный на квантовании.
- •Приоритетное планирование.
- •Алгоритмы планирования ос пакетной обработки: «первым пришел – первым обслужен», «кратчайшая задача – первая», «наименьшее оставшееся время выполнения».
- •Алгоритмы планирования в интерактивных ос: циклическое, приоритетное, гарантированное, лотерейное, справедливое планирование.
- •Алгоритм планирования Windows nt.
- •Алгоритм планирования Linux.
- •Планирование в ос реального времени.
- •Синхронизация процессов и потоков: цели и средства синхронизации.
- •Ситуация состязаний (гонки). Способы предотвращения.
- •Способы реализации взаимных исключений: блокирующие переменные, критические секции, семафоры Дейкстры. Блокирующие переменные
- •Критические секции
- •Семафоры
- •Взаимные блокировки. Условия, необходимые для возникновения тупика.
- •Обнаружение взаимоблокировки при наличии одного ресурса каждого типа.
- •Обнаружение взаимоблокировок при наличии нескольких ресурсов каждого типа.
- •Предотвращение взаимоблокировки. Алгоритм банкира для одного вида ресурсов.
- •Предотвращение взаимоблокировки. Алгоритм банкира для нескольких видов ресурсов.
- •Синхронизирующие объекты ос: системные семафоры, мьютексы, события, сигналы, ждущие таймеры.
- •Организация обмена данными между процессами (каналы, разделяемая память, почтовые ящики, сокеты).
- •Прерывания (понятие, классификация, обработка прерываний).
- •Обработка аппаратных прерываний
- •Функции ос по управлению памятью.
- •Виртуальная память.
- •Алгоритмы распределения памяти без использования внешних носителей (фиксированные, динамические, перемещаемые разделы).
- •Страничное распределение памяти.
- •Алгоритмы замещения страниц.
- •Сегментное распределение памяти.
- •Сегментно-страничное распределение памяти.
- •Средства поддержки сегментации памяти в мп Intel Pentium.
- •Сегментный режим распределения памяти в мп Intel Pentium.
- •Сегментно-страничный режим распределения памяти в мп Intel Pentium.
- •Средства защиты памяти в мп Intel Pentium.
- •Случайное отображение основной памяти на кэш.
- •Детерминированное отображение основной памяти на кэш.
- •Кэширование в мп Intel Pentium. Буфер ассоциативной трансляции.
- •Кэширование в мп Intel Pentium. Кэш первого уровня.
- •Задачи ос по управлению файлами и устройствами.
- •Многослойная модель подсистемы ввода-вывода.
- •Физическая организация жесткого диска.
- •Файловая система. Определение, состав, типы файлов. Логическая организация файловой системы.
- •Физическая организация и адресация файлов.
- •Fat. Структура тома. Формат записи каталога. Fat12, fat16, fat32.
- •Ufs : структура тома, адресация файлов, каталоги, индексные дескрипторы.
- •Ntfs: структура тома.
- •Ntfs: типы файлов, организация каталогов.
- •Файловые операции. Процедура открытия файла.
- •Организация контроля доступа к файлам.
- •Отказоустойчивость файловых систем.
- •Процедура самовосстановления ntfs.
- •Избыточные дисковые подсистемы raid.
- •Многоуровневые драйверы.
- •Дисковый кэш.
- •Классификация угроз вс.
- •Системный подход к обеспечению безопасности.
- •Шифрование.
- •Аутентификация, авторизация аудит.
- •Показатели эффективности ос
- •Настройка и оптимизация ос.
-
Классическая архитектура ос. Монолитные и многослойные ос.
Монолитное ядро представляет собой набор процедур, каждая из которых может вызвать каждую. Все процедуры работают в привилегированном режиме. Таким образом, монолитное ядро - это такая схема организации операционной системы, при которой все ее компоненты являются составными частями одной программы, используют общие структуры данных и взаимодействуют друг с другом путем непосредственного вызова процедур. Для монолитной операционной системы ядро совпадает со всей системой. Монолитное ядро - старейший способ организации операционных систем.
Такая организация ОС предполагает следующую структуру:
-
Главная программа, которая вызывает требуемые сервисные процедуры.
-
Набор сервисных процедур, реализующих системные вызовы.
-
Набор утилит, обслуживающих сервисные процедуры.
Многослойная ОС - организация ОС как иерархии уровней с хорошо определенными связями между ними, так чтобы объекты уровня N могли вызывать только объекты из уровня N-1. Нижним уровнем в таких системах обычно является аппаратура, верхним уровнем интерфейс пользователя. Чем ниже уровень, тем более привилегированные команды и действия может выполнять модуль, находящийся на этом уровне. Уровни образуются группами функций операционной системы - файловая система, управление процессами и устройствами и т.п. Каждый уровень может взаимодействовать только со своим непосредственным соседом - выше- или нижележащим уровнем. Прикладные программы или модули самой операционной системы передают запросы вверх и вниз по этим уровням. Они хорошо реализуются, но сложны в разработке так как трудно рассчитать порядок слоев и что к какому слою относится, системы менее эффективны чем монолитные ОС. Ядро может состоять из следующих слоев:
-
средства аппаратной поддержки (система прерываний, средства переключения контекстов процессов, средства поддержки привилегированного режима, средства защиты областей памяти и т. д.);
-
машинно-зависимые компоненты ОС; в идеале этот слой полностью экранирует вышележащие слои ядра от особенностей аппаратуры (пример – слой HAL ОС Windows NT);
-
базовые механизмы ядра, этот слой выполняет наиболее примитивные операции ядра, реализует решения о распределении ресурсов, принятые на более высоком уровне;
-
менеджеры ресурсов; слой состоит из мощных функциональных модулей, реализующих стратегические задачи по управлению основными ресурсами ОС;
-
интерфейс системных вызовов является самым верхним слоем ядра и взаимодействует непосредственно с приложениями и системными утилитами, образуя прикладной программный интерфейс ОС.
-
Микроядерная архитектура ос.
В микроядерной архитектуре в привилегированном режиме остается работать только очень небольшая часть ОС, называемая микроядром. Микроядро защищено от остальных частей ОС и приложений. В состав микроядра обычно входят машинно-зависимые модули, а также модули, выполняющие базовые функции ядра по управлению процессами, обработке прерываний, управлению виртуальной памятью, пересылке сообщений и управлению устройствами ввода/вывода, которые практически невозможно выполнить в пользовательском режиме. Все остальные функции ядра оформляются в виде приложений, работающих в пользовательском режиме, которые теперь называются серверами ОС. Клиент, которым может быть либо другой компонент ОС, либо прикладная программа, запрашивает сервис, посылая сообщение на сервер. Микроядро, работающее в привилегированном режиме, доставляет сообщение нужному серверу, сервер выполняет операцию, после чего ядро возвращает результаты клиенту с помощью другого сообщения Поддержка этого механизма является одной из главных задач микроядра.
Основное достоинство микроядерной архитектуры – высокая степень модульности ядра ОС. Это существенно упрощает добавление в него новых компонентов. Микроядерная архитектура повышает надежность системы, поскольку ошибка на уровне непривилегированной программы менее опасна, чем отказ на уровне режима ядра. В то же время, микроядерная архитектура существенно снижает производительность операционной системы.
Одна из проблем, возникающих при разработке микроядерной ОС – какие функции включать в микроядро, а какие выносить в пользовательское пространство. В идеальном случае микроядро может состоять только из средств передачи сообщений и аппаратно-зависимых модулей (так называемая модель экзоядра). Для повышения производительности ОС в состав микроядра могут входить и другие часто используемые функции. Минус микроядерной архитектуры - снижение производительности. Приложение обращается к микроядру, оно обращается к серверу, потом снова к микроядру.