
- •I. Основные понятия и законы химии
- •II. Строение атома
- •1. Ядерная модель атома. Строение атома. Состав атомных ядер. Массовое число. Атомный номер. Нуклид. Изотопы. Явление радиоактивности. Воздействие радиоактивного излучения на живую материю.
- •III. Периодический закон и периодическая система элементов д.И.Менделеева
- •IV. Химическая связь и строение вещества
- •Поскольку в этой молекуле оба атома кислорода равноценны (и, следовательно, равноценны обе связи s-o), свойства молекулы лучше передает графическая формула с делокализацией π-связью:
- •5. Ионная и металлическая связь. Механизм образования ионной связи. Степень ионности связи. Ионные кристаллические решетки. Координационное число иона.
- •9. Молекулярное и немолекулярное строение веществ. Молекулярные, атомные и ионные соединения. Графические и структурные формулы веществ. Газообразное и конденсированное состояния веществ.
- •V. Химическая кинетика и термодинамика
- •VI. Растворы
- •VII. Окислительно-восстановительные реакции (овр)
- •Электродвижущая сила (эдс) гальванического элемента
- •1. Оценить окислительно-восстановительные свойства веществ.
- •2. Предсказать принципиальную возможность осуществления реакции в
- •4. Выбрать наиболее вероятную реакцию из нескольких возможных.
- •4.Коррозия металлов. Основные виды коррозии металлов. Методы защиты металлов от коррозии.
- •VIII. Комплексные соединения
- •IX. Водород и элементы группы viia
- •Простые вещества
- •Водород
- •Галогены и их соединения
- •Бинарные соединения галогенов
4.Коррозия металлов. Основные виды коррозии металлов. Методы защиты металлов от коррозии.
2. с. 536-543; 3. с. 360-366.
Коррозия металлов - окислительно-восстановительный процесс разрушения металлов за счёт протекания химических или электрохимических реакций с их участием.
Химическая коррозия всегда осуществляется в неэлектропроводной среде и не сопровождается образованием гальванических элементов (возникновением электрического тока).
Различают газовую и жидкостную химическую коррозию.
Газовая коррозия заключается в разрушении металлов за счёт взаимодействия с газами или парами агрессивных веществ – O2, H2O, CO2, SO2, H2S, HCl, Cl2. Она может осуществляться как при комнатной, так и при высоких температурах.
Например, при комнатной температуре серебро медленно корродирует в атмосфере сероводорода, покрываясь чёрным налётом сульфида серебра:
4Ag + 2H2S +O2 = 2Ag2S + 2H2O
Медь и её сплавы (бронза, латунь) корродируют во влажном воздухе, покрываясь зелёным налётом основной соли – карбоната гидроксомеди(II):
2Сu + O2 + CO2 + H2O = (CuOH)2CO3
При высокой температуре за счёт взаимодействия металлов с кислородом корродируют сопла ракетных двигателей, лопатки газовых турбин, элементы электронагревателей.
Жидкостная коррозия – разрушение металлов за счёт их взаимодействия с агрессивными жидкостями-неэлектролитами - бромом, расплавленной серой, олеумом, а также с нефтепродуктами, в которых содержатся коррозионноактивные соединения серы (меркаптаны, сероводород). Например, металлические трубы, по которым перекачиваются нефть или нефтепродукты, медленно разрушаются за счёт образования на их внутренней поверхности сульфида железа(II):
Fe + S(нефть) = FeS.
Электрохимическая коррозия протекает только в электропроводной среде за счёт образования гальванических микроэлементов и сопровождается возникновением электрического тока.
Наиболее распространённым видом электрохимической коррозии является контактная коррозия. Она осуществляется при контакте двух металлов в электропроводной среде (в растворе электролита) за счёт образования гальванического элемента. Например, оцинкованная жесть (железо, покрытое слоем цинка) подвергается электрохимической коррозии даже в такой неагрессивной среде, как природная вода, содержащая растворённые О2 и СО2 (атмосферная коррозия). Более активный металл (анод, Zn) окисляется по схеме:
Zn0 – 2e- = Zn2+
Образующиеся при этом катионы цинка переходят в раствор, а свободные электроны направляются на поверхность менее активного металла (катода, Fe). Возникающий при этом направленный поток электронов представляет собой электрический ток. На поверхности железа, содержащей избыток электронов, молекулы воды и кислорода восстанавливаются, превращаясь в гидроксид-анионы по схеме:
2H2O + O2 + 4e- = 4OH-.
Анионы OH- соединяются с катионами Zn2+, находящимися у поверхности анода, образуя на ней рыхлый слой малорастворимого гидроксида Zn(OH)2.
Таким образом, при электрохимической коррозии всегда разрушается более активный металл (анод), а на поверхности менее активного металла (на катоде) протекают процессы восстановления катионов или молекул, содержащихся в растворе электролита.