
- •I. 51.01.01 «Геология и разведка месторождений
- •28 Октября 2005 г., протокол №
- •Предисловие
- •Лекция 1
- •Объекты и содержание минералогии
- •Значение минералов для человека
- •История развития минералогии
- •История развития минералогии в России
- •Лекция 2
- •Минералы в строении вселенной Минералы метеоритов
- •Строение земной коры и минералогическая зональность
- •Химическая связь
- •Кристаллическая структура минералов
- •Лекция 3
- •Полиморфизм и полиморфные модификации
- •Псевдоморфозы (ложные кристаллы)
- •Явление изоморфизма
- •Типы изоморфизма
- •Изоструктурные минералы
- •Твердые растворы
- •Лекция 4
- •Химический состав минералов
- •Химические анализы
- •Расчет формул минералов
- •Расчет формулы сфалерит
- •Расчет формулы граната
- •Причины кристаллизации минералов
- •Аморфные и скрытокристаллические минералы
- •Лекция 5
- •Морфология кристаллов Закон постоянства гранных углов
- •Двойниковые сростки кристаллов
- •Микрорельеф поверхности кристаллов
- •Пирамиды и зоны роста кристаллов
- •Расщепленные кристаллы, скелетные кристаллы и дендриты, метасомы, пойкилосомы
- •Включения в кристаллах
- •Облик и габитус кристаллов
- •Морфология кристаллических агрегатов
- •Лекция 6
- •Физические и химические свойства минералов
- •Анизотропия свойств кристаллов
- •Физические свойства изоморфных смесей
- •Оптические свойства
- •Отражение и преломление света
- •Поляризация и двойное лучепреломление
- •Светопроницаемость (прозрачность)
- •Лекция 7
- •Окраска минералов
- •Собственные окраски минералов Окраска за счет избирательного светопоглощения
- •Анизотропия окраски
- •Игра и переливы цвета
- •Чужеродные окраски
- •Лекция 8
- •Цвет черты
- •Люминесценция
- •Плотность
- •Механические свойства
- •Твердость
- •Спайность, излом
- •Лекция 9
- •Прочность минералов
- •Магнитные свойства минералов
- •Электрические свойства
- •Пьезоэлектричество
- •Пироэлектричество
- •Радиоактивность
- •Лекция 10
- •Определение и описание минералов
- •Макроскопическая идентификация минералов
- •Физические свойства минералов
- •Морфология кристаллов
- •Цвет и черта
- •Твердость
- •Плотность и методы ее определения
- •Лекция 11
- •Спайность, отдельность и излом
- •Прочность
- •Специальные физические тесты
- •Люминесценция
- •Магнетизм
- •Электрические свойства
- •Радиоактивность
- •Минеральные ассоциации
- •Химические тесты при изучении минералов
- •Растворимость
- •Вкус и запах
- •Лекция 12
- •Лабораторные методы определения минералов
- •Устройство микроскопа
- •Оптические методы определения минералов
- •Изучение прозрачности
- •Изучение формы зерен
- •Исследование включений
- •Определение оптического класса
- •Определение показателя преломления
- •Изучение окраски минерала и плеохроизма
- •Определение силы двупреломления
- •Угол погасания
- •Изучение минералов в сходящемся свете
- •Лекция 13
- •Основные методы определения ювелирных минералов
- •Рефрактометр. Определение показателя преломления
- •Полярископ
- •Рефлектометр
- •Определение окраски ювелирных камней
- •Цветной фильтр Челси
- •Дихроизм и дихроскоп
- •Спектроскоп
- •Лекция 14
- •Методы исследования структуры минералов
- •Дифракция рентгеновских лучей
- •Виды дифракционных исследований
- •Порошковый метод рентгенографии
- •Монокристалльный метод рентгенографии
- •Дифракция нейтронов
- •Дифракция электронов и электронный микроскоп
- •Методы исследования химического состава минералов
- •Электронно-зондовый микроанализ
- •Рентгеновский флуоресцентный анализ
- •Лекция 15
- •Генетическая минералогия
- •Среды минералообразования
- •Причины и способы минералообразования
- •Типы минеральных месторождений
- •Лекция 16
- •Эндогенное минералообразование
- •Магматический этап минералообразования (магматические минеральные месторождения)
- •Лекция 17
- •Минеральные ассоциации пегматитов
- •Гидротермальное минералообразование
- •Полезные ископаемые гидротермальных образований
- •Контактово-метасоматическое минералообразования
- •Скарны и грейзены
- •Полезные ископаемые скарнов
- •Полезные ископаемые грейзенов
- •Метаморфическое минералообразование
- •Минеральные ассоциации метаморфизованных месторождений
- •Минеральные ассоциации метаморфических месторождений
- •Лекция 18
- •Экзогенное минералообразование Минералы коры выветривания
- •Минералы осадочных пород
- •Обломочные осадочные месторождения
- •Хемогенные осадочные месторождения
- •Биогенные осадочные месторождения
- •Диагенетическое минералообразование
- •Заключение
- •Литература
- •Дополнительная
- •Оглавление
Расчет формул минералов
В минералогии важно суметь рассчитать формулу минерала по результатам его химических анализов. Результаты химических анализов выражают в массовых (весовых) процентах. В случае сульфидных минералов расчет формулы по данным таких анализов представляет собой простую арифметическую задачу. В качестве первого шага следует разделить содержание каждого элемента в массовых процентах на его атомное количество для получения мольной доли этого элемента (табл. 1). Структурная формула железосодержащего сфалерита выглядит как (Fe,Zn)S, и поэтому, чтобы результаты имели правильные соотношения, необходимо привести к единице либо сумму мольных долейZnиFe, либо мольную долюS. Рассчитанные обоими способами формулы должны совпадать. Так, приводяSк единице и округляя значения до второго знака, получаем формулу (Zn0,86Fe0,14)1,00S.
Расчет формулы сфалерит
Таблица 1
Элемент |
Вес. % |
Атомный вес |
Атомный вес |
Атомные соотношения |
Zn |
57,93 |
|
0,886 |
0,858 |
Fe |
8,21 |
55,85 |
0,1407 |
0,136 |
S |
33,09 |
32,07 |
1,032 |
1,000 |
Сумма |
99,23 |
|
|
|
Большинство минералов имеет не постоянный, а характерный состав, что и выражается их формулой. Например, сфалерит в одних случаях может представлять почти чистый сульфид цинка, а в других содержать значительные примеси железа и незначительные кадмия и магния. Однако для всех разновидностей сфалерита атомные количества серы и катионов (цинка, железа и др.) будут составлять 1:1, что соответствует формуле ZnSили (Zn,Fe)S, где атомные количестваZn+Fe= 1 и атомные количества серы также равны 1.
Расчет формулы граната
Таблица 2
Оксид |
Вес. % |
Молекулярное количество оксидов |
Атомные количества кислорода в молекуле
|
Число анионов в расчете на 12 атомов O, т.е. столбец (3)х 4,422 |
Число катионов в формуле |
1 |
2 |
3 |
4 |
5 | |
SiO2 |
40,34 |
0,6714 |
1,3426 |
5,937 |
Si 2,968 |
Al2O3 |
18,25 |
0,1790 |
0,537 |
2,374 |
0,032 Al 1,582 1,550 |
FeO |
4,84 |
0,0674 |
0,0674 |
0,298 |
Fe 0,298 |
MnO |
0,25 |
0,0035 |
0,0035 |
0,015 |
Mn 0,015 |
TiO2 |
2,10 |
0,0263 |
0,05226 |
0,232 |
Ti 0,116 |
Cr2O3 |
2,22 |
0,0146 |
0,0438 |
0,194 |
Cr 0,129 |
CaO |
18,77 |
0,3347 |
0,3347 |
1,480 |
Ca 1,480 |
MgO |
13,37 |
0,3317 |
0,3317 |
1,467 |
Mg 1,467 |
Сумма |
100,14 |
|
2,7133 12/2,7133=4,422 |
|
|
Результаты анализов породообразующих минералов обычно выражают в массовых процентах оксидов (табл. 2). Сначала рассчитывают число молей каждого оксида путем деления его массового процента на молекулярную массу, что дает относительное содержание оксидных молекул (столбец 2). Далее рассчитывают атомные количества кислорода. Для этого каждое значение столбца 2 умножается на число атомов кислорода в соответствующих оксидах (столбец 3). В нижней части столбца приведено общее число атомов кислорода (2,7133). Если надо получить формулу граната на основе 12 атомов кислорода, то необходимо пересчитать соотношения кислородных атомов таким образом, чтобы их общее число равнялось 12. для этого цифры столбца 3 для каждого оксида умножаются на 12/Т, где Т – общее количество кислорода из столбца 3. Результаты приведены в столбце 4. Далее надо рассчитать соотношения атомов для различных катионов. С этой целью числа столбца 4 нужно умножить или разделить на значения этих соотношений, определяемые стехиометрией. Так, например, уSiO2имеется один кремний на два кислорода. Поэтому соответствующее число столбца 4 делится на 2. УAl2O3на каждые три атома кислорода приходится два атома алюминия, и в этом случае число столбца 4 умножается на 2/3. Для двухвалентных катионов числа в столбцах 4 и 5 совпадают. Количества катионов в формуле, соответствующие установленному числу атомов кислорода (12) и приведенные в столбце 5, могут быть сгруппированы, как это показано в таблице, в соответствии со структурной формулой гранатаA3B2[(Si,Al)O4]3, где А – двухвалентные катионы (Ca,Mg,Fe,Mn), а В – трехвалентные катионы (Al,Cr), а такжеTi4+. ДефицитSiкомпенсируется за счетAl, который берется в таком количестве, чтобы целиком заполнить тетраэдрические позиции. Оставшиеся атомы алюминия относятся к позиции В.
Чтобы быстро оценить правильность расчетов, можно просуммировать положительные и отрицательные заряды, проверив баланс валентностей.