
- •Никотинамидные дегидрогеназы. Их строение и роль. Механизм участия над в окислит реакции
- •Что такое окислительное фосфорилирование? Как можно выразить его эффективность?
- •Реакция синтеза лимонной кислоты
- •Роль витамина с в биогенезе коллагена
- •Формула сукцината. Роль
- •Определение метаболизма, анаболизма и катоболизма. Формула атф. Свойства и биологич роль атф
- •Привести по одному примеру окисления субстратов полной и укороченной цепей митох окисл. (реакции)
- •Окислит р-и, катализир-е диоксигеназами (общ вид). Их биол значение.
- •Активные формы кислорода. Их свойства и биол значение.
- •Формула витимина в2. Роль
- •Суммарная реация окислит декарбоксилирования пвк. От каких витаминов зависит протекание данной р-и?
- •Пути использования атф в митохондриях и цитоплазме
- •Перечислить основные неферм компоненты антиоксидантной защиты
- •Биологическая роль монооксигеназного окисления. Р-я обр. Тирозина из фенилаланина
- •Формула над. Биол ф-я
- •Строение флавиновых дегидрогеназ, их роль в биол окисл. Формула фмн. Механизм его участия в окислит. Р-ях. (недостаточно)
- •ННаписать р-ю, катализируемую протеин-лизин-6-оксидазой. Ее роль в биосинтезе коллагена.
- •Дать определение понятию общие метаболиты. Формулв главнейш из них
- •Роль глутатиона в системе антиоксидантной защиты
- •Формула кофермента q, его роль
- •Строение, свойства и функции митох цитохромов. Механизм их участия в окислительных реакциях.
- •Суммарная реакция окислит декарбоксилирования альфа-кетаглутаровой кислоты. От каких витаминов зависит протекание данной реакции?
- •Роль витамина е в ао
- •Окислительные реакции, катализируемые оксидазами (общ вид). Строение и локализация ф. Биол значение оксидазного окисл.
- •Формула атф. Биохимич р-я
- •Общая характеристика цтк. Итоговое уравнение и биохимич значение процесса
- •Написать р-ю, катализируемую протеин-лизин-5-гидроксилазой. Ее роль в биосинтезе коллагена.
- •Формула витамина с. Биох ф-я
- •Убихинон.
- •Способы обр-я атф.
- •Реакция цтк сопряженные с декарбоксилированием
- •Формула пвк. Роль
- •Роль витамина а в митох окисл
- •Реакции Цтк с обр атф
- •Основные ферменты пероксидантной защиты. Реакция катализируемая пероксидазой слюны.
- •Окислительные реакции, катализируемые десатуразами. Строение и локализация, роль.
- •Механизм сопряжения окисления и фосфорилирования. Строение и свойства протон-зависимой атф-синтетазы.
- •2.ЦТк до альфакетогл
- •Роль витамина с в окислит р-ях
- •Формула альфа-кетоглутаровой кислоты. Роль.
- •Окислительное фосфорилирование. Эффективность. Коеф р/о.
- •Написать реакцию субстратного фосфорилирования, протекающую в цтк. Класс фермента
- •Автономная саморегуляция м/о (дыхательный контроль). Энергетический заряд клетки, возможный диапазон его значений.
- •2. Написать реакции цтк от суккцинил-КоА до оксалоацетата.Энерг итог.
- •Окислительные реакции, катализ оксидазами. Строение и роль.
- •4. Активные формы кислорода, их свойства и био знаечние.
- •Формула витамина с, функции.
- •Дать сравнительный анализ способов образования атф в организме человека. Привести примеры реакций, сопряженных с образованием атф.
- •Написать формулы метаболитов цтк, являющихся субстратами м/о.
- •Автономная регуляция цтк
- •Лизил-5гидроксилаза
-
Формула витамина с, функции.
Витамин С, являясь сильным восстановителем, играет роль кофактора в реакциях окислительного гидроксилирования, что необходимо для окисления аминокислот пролина и лизина в оксипролин и в оксилизин в процессе биосинтеза коллагена. Коллаген может синтезироваться и без участия витамина С, но такой коллаген не является полноценным (не формирутся его нормальная структура). Поэтому при недостатке витамина С ткани, содержащие много коллагена, становятся непрочными, ломкими. В первую очередь нарушается структура стенок сосудов, повышается их проницаемость, наблюдаются кровоизлияния под кожу и под слизистые оболочки.
Билет 13
-
Дать сравнительный анализ способов образования атф в организме человека. Привести примеры реакций, сопряженных с образованием атф.
-
Наиболее эффективный способ синтеза АТФ использует энергию градиента электрохимического потенциала (см. Процессы пищеварения) для образования АТФ из АДФ (ADP) и неорганического фосфата. Энергия для создания такого градиента возникает в результате окислительно-восстановительного процесса. Этот механизм называют окислительным фосфорилированием. Транспортирующая Н+ АТФ-синтаза (см. Моноклональные антитела, иммуноанализ) использует для синтеза АТФ энергию градиента потенциала. У эукариот окислительное фосфорилирование происходит только в присутствии кислорода (то есть в аэробных условиях).
-
Второй, эволюционно более ранний способ синтеза АТФ осуществляется в анаэробных условиях. Он основан на переносе фосфатных остатков на АДФ через метаболит с высоким потенциалом переноса фосфатных групп. В качестве примера здесь представлено образование АТФ из креатин-фосфата — соединения, которое служит в мышцах энергетическим ресурсом (см. Источники энергии). Формально перенос фосфатной группы с креатинфосфата на АДФ является суммарной реакцией гидролиза креатинфосфата (а) и синтеза АТФ (б).
ИЛИ
В организме АТФ синтезируется путём фосфорилирования АДФ:
АДФ + H3PO4 + энергия → АТФ + H2O.
Фосфорилирование АДФ возможно двумя способами: субстратное фосфорилирование и окислительное фосфорилирование (используя энергию окисляющихся веществ). Основная масса АТФ образуется на мембранах митохондрий в ходе окислительного фосфорилирования H-зависимой АТФ-синтазой. Субстратное фосфорилирование АТФ не требует участия мембранных ферментов, оно происходит в процессе гликолиза или путём переноса фосфатной группы с других макроэргических соединений.
Реакции фосфорилирования АДФ и последующего использования АТФ в качестве источника энергии образуют циклический процесс, составляющий суть энергетического обмена.
В организме АТФ является одним из самых часто обновляемых веществ, так у человека продолжительность жизни одной молекулы АТФ менее 1 мин. В течение суток одна молекула АТФ проходит в среднем 2000—3000 циклов ресинтеза (человеческий организм синтезирует около 40 кг АТФ в день, но содержит в каждый конкретный момент примерно 250 г), то есть запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ.