
- •3.3.3. Контрольные вопросы к экзамену.
- •1. Углеводы пищи, животного и растительного происхождения: нормы и принципы нормирования их суточной потребности.
- •3. Нарушение переваривания и всасывания углеводов.
- •4. Пути поступления и превращения углеводов в тканях организма. Транспортёры глюкозы. Ключевая роль глюкозо-6-фосфата во внутриклеточном углеводном обмене. Роль глюкокиназы и гексокиназы.
- •5. Анаэробный гликолиз: понятие, этапы, последовательность реакций, регуляция, энергетический баланс.
- •6. Аэробный гликолиз как первый, этап окисления моносахаридов в аэробных условиях до образования пирувата: понятие, этапы, последовательность реакций, регуляция, энергетический баланс.
- •8. Катаболизм глюкозы по механизму пентозофосфатного пути. Реакции окислительной стадии, регуляция, связь с гликолизом, его биологические функции,
- •9. Глюконеогенез, тканевые особенности, схема, субстраты, биологическая роль. Ключевые (необратимые) реакции гликолиза и глюконеогенеза, регуляция, значение.
- •10. Обмен гликогена, как резервного полисахарида. Распад гликогена - гликогенолиз, его связь с гликолизом.
- •11. Синтез гликогена. Понятие о гликогенозах и агликогенозах.
- •12. Химическая природа, и обмен адреналина, глюкогона и инсулина - их роль в регуляции резервирования и мобилизации гликогена и регуляции уровня сахара в крови.
- •13. Гипер- и гипогликемия: причины возникновения, механизмы срочной и долгосрочной компенсации. Метаболические и клинические последствия острых и хронических гипер- и гипогликемий.
- •14. Инсулин: структура, этапы метаболизма, механизм действия, метаболические эффекты, биохимические нарушения и последствия при гипер- и гипоинсулинемии.
- •15. Сахарный диабет: причины возникновения, метаболические нарушения, клинические проявления, биохимическая диагностика, профилактика.
- •16. Биохимические причины и механизмы развития острых осложнений сахарного диабета: гипер- гипо- и ацидотической комы. Профилактика нарушений.
- •19. Биохимическая диагностика нарушений углеводного обмена. Глюкозотолерантный тест, его проведение и оценка. Механизм действия инсулина на транспорт глюкозы в клетки.
- •20. Особенности обмена фруктозы и галактозы. Фруктоземя, галактоземия.
- •1. Важнейшие липиды животного и растительного происхождения, их классификация, структуры, свойства, биологическая роль. Норма суточной потребности в липидах.
- •2. Состав, молекулярная организация, физико-химические и биологические функции мембран.
- •3. Механизмы переваривания, всасывания липидов. Желчь: состав, функции, механизм участия в пищеварении. Стеаторея: причины, последствия.
- •4. Транспортные липопротеиды крови: состав, строение, классификация функции, диагностическое значение определения.
- •5. Катаболизм триглицеридов в белой жировой ткани: реакции, механизмы регуляции активности липазы жировых клеток, роль гормонов, значение.
- •6. Биосинтез триглицеридов: реакции, механизмы регуляции, роль гормонов, значение.
- •7. Биосинтез фосфолипидов. Липотропные факторы, их роль в профилактике нарушений обмена липидов.
- •8. Механизмы β-окисления жирных кислот: регуляция, роль карнитина, энергетический баланс. Значение для энергообеспечения тканей и органов.
- •9. Механизмы перекисного окисления липидов (пол), значение в физиологии и патологии клетки.
- •10. Пути обмена Ацетил-КоА, значение каждого пути. Общая характеристика процесса биосинтез жирных кислот. Понятие об эссенциальных жирных кислотах и их роли в профилактике нарушений обмена липидов.
- •11. Кетоновые тела: биологическая роль, реакции обмена, регуляция. Кетонемия, кетонурия, причины и механизмы развития, последствия.
- •12. Функции холестерина. Фонд холестерина организма: пути поступления, использования и выведения. Синтез холестерина: основные этапы, регуляция процесса.
- •13. Гиперхолестеринемия, ее причины, последствия. Пищевые вещества, снижающие уровень холестерина.
- •14. Атеросклероз: биохимические причины, метаболические нарушения, биохимическая диагностика, осложнения. Факторы риска в развитии атеросклероза, их механизмы действия, профилактика.
- •15. Ожирение. Особенности обмена веществ при ожирении.
10. Пути обмена Ацетил-КоА, значение каждого пути. Общая характеристика процесса биосинтез жирных кислот. Понятие об эссенциальных жирных кислотах и их роли в профилактике нарушений обмена липидов.
Ацетил-КоА образуется в специфических реакциях катаболизма жирных кислот и некоторых аминокислот. В реакциях гликолиза из глюкозы образуется ПВК, которая поступает в матрикс митохондрий и превращается в Ацетил-КоА с участием ПВК ДГ. Так как внутренняя мембрана митохондрий непроницаема для Ацетил-КоА, поэтому он при участии цитратсинтазы конденсируется с ЩУК с образованием цитрата: [Ацетил-КоА + Оксалоацетат → Цитрат + HS-КоА]. Затем транслоказа переносит цитрат в цитоплазму. Перенос цитрата в цитоплазму происходит только при увеличении количества цитрата в митохондриях, когда изоцитратдегидрогеназа и α-кетоглутаратдегидрогеназа ингибированы высокими концентрациями НАДН2 и АТФ (при избытке углеводов и низком энергопотреблении). В цитоплазме цитрат расщепляется под действием фермента цитрат-лиазы: [Цитрат + HSKoA + АТФ → Ацетил-КоА + АДФ+ Pн + ЩУК].
Биосинтез жирных кислот протекает в печени с участием НАДФН, АТФ, Мn2+ и НСО3– (в качестве источника СО2), витаминов (биотин, РР); субстратом является ацетил-КоА, конечным продуктом – пальмитиновая кислота.
Эссенциальные жирные кислоты (Омега-3,6) - комплекс полиненасыщенных жирных кислот, которые принимают значительное участие в метаболизме человека. К ним относят линолевую и линоленовую к-ты. Жирные кислоты омега-6 понижают уровень холестерина в крови, а жирные кислоты омега-3 - уровень триглицерида и кровяное давление.
11. Кетоновые тела: биологическая роль, реакции обмена, регуляция. Кетонемия, кетонурия, причины и механизмы развития, последствия.
При дефиците углеводов наблюдается: ↓ие распада глюкозы; содержание ПВК ↓ся; содиржание ЩУК ↓ся; ЦТК угнетается. ↑ся распад ЖК с образованием ацетил-S-KoA. Роль кетоновых тел резко ↑ся при голодании – они служат источником энергии для мышц и мозга при голодании. Окисление кетоновых тел в тканях: [β-гидроксибутират (β-гидроксибутират-дегидрогеназа)↔ ацетоацетат (Сукцинил-КоА-ацетоацетат-КоА-трансфераза)→ Ацетоацетил-КоА (Тиолаза)↔ 2-ацетил-КоА→ ЦТК]. В норме кетоновых тел ни в крови ни в моче нет. Кетонемию и кетонурию наблюдают при СД, углеводном голодании, лихорадочных состояниях, общем голодании и истощении, тяжелой интоксикации свинцом. Следствием кетонемии является кетоацидоз и ацетоновое отравление (ацетон растворяет структурные липиды клеток), при котором нарушается транспорт глюкозы через биомембраны и резко угнетается деятельность ЦНС.
12. Функции холестерина. Фонд холестерина организма: пути поступления, использования и выведения. Синтез холестерина: основные этапы, регуляция процесса.
Холестерол - стероид, характерный только для животных организмов. Он синтезируется во многих тканях человека, но основное место синтеза - печень. Холестерол выполняет много функций: входит в состав всех мембран клеток и влияет на их свойства, служит исходным субстратом в синтезе жёлчных кислот и стероидных гормонов. Ежедневно из организма выводится около 1 г холестерола. Приблизительно половина этого количества экскретируется с фекалиями после превращения в желчные кислоты. Оставшаяся часть выводится в виде нейтральных стероидов. Большая часть холестерола, поступившего в желчь, реабсорбируется
Реакции синтеза холестерола происходят в цитозоле клеток. Сложный путь синтеза холестерола можно разделить на 3 этапа. Первый этап заканчивается образованием мевалоната. Две молекулы ацетил-КоА конденсируются ферментом тиолазой с образованием ацетоацетил-КоА. Фермент гидроксиметилглутарил-КоА-синтаза присоединяет третий ацетильный остаток с образованием ГМГ-КоА (3-гидрокси-3-метилглутарил-КоА). Эта последовательность реакций сходна с начальными стадиями синтеза кетоновых тел. Однако реакции синтеза кетоновых тел происходят в митохондриях печени, а реакции синтеза холестерола - в цитозоле клеток. Следующая реакция, катализируемая ГМГ-КоА-редуктазой, является регуляторной в метаболическом пути синтеза холестерола. В этой реакции происходит восстановление ГМГ-КоА до мевалоната с использованием 2 молекул NADPH. Фермент ГМГ-КоА-редуктаза - гликопротеин, пронизывающий мембрану ЭР, активный центр которого выступает в цитозоль. На втором этапе синтеза мевалонат превращается в пятиуглеродную изопреноидную структуру, содержащую пирофосфат - изопентенилпирофосфат. Продукт конденсации 2 изопреновых единиц - геранилпирофосфат. Присоединение ещё 1 изопреновой единицы приводит к образованию фарнезилпирофосфата - соединения, состоящего из 15 углеродных атомов. Две молекулы фарнезилпирофосфата конденсируются с образованием сквалена - углеводорода линейной структуры, состоящего из 30 углеродных атомов. На третьем этапе синтеза холестерола сквален через стадию образования эпоксида ферментом циклазой превращается в молекулу ланостерола, содержащую 4 конденсированных цикла и 30 атомов углерода. Далее происходит 20 последовательных реакций, превращающих ланостерол в холестерол. На последних этапах синтеза от ланостерола отделяется 3 атома углерода, поэтому холестерол содержит 27 углеродных атомов.