
- •Структура и функции белков
- •Ферменты
- •1. Субстратная специфичность
- •Введение в обмен веществ. Биохимия питания
- •Биосинтез нуклеиновых кислот и белков
- •Строение и функции клеточных мембран
- •Биологическое окисление. Энергетичский обмен
- •Сопряжение общих путей катаболизма с дыхательной цепью
- •Регуляция общих путей катаболизма
- •Обмен и функции углеводов
- •Биосинтез гликогена
- •Обмен и функции липидов
- •Обмен и функции аминокислот
- •78. Переаминирование аминокислот.
- •Регуляция обмена веществ. Гормоны
- •Биохимия крови
- •Биохимия мышц
- •Биохимия нервной ткани
- •Биохимия печени
- •Биохимия образования мочи
Регуляция обмена веществ. Гормоны
78. Основные регуляторные системы организма и механизмы регуляции метаболизма и функций.
В механизмах регуляции, обеспечивающих гомеостаз, а также время, направление и величину изменений, можно выделить три уровня. Первый уровень— внутриклеточные механизмы регуляции. Сигналами для изменения состояния клетки служат вещества, образующиеся в самой клетке или поступающие в нее извне. Эти вещества могут действовать тремя способами: а) изменять активность ферментов путем ингибирования или активации; б) изменять количество ферментов и других белков путем индукции или репрессии их синтеза или путем изменения скорости их распада; в) изменять скорость трансмембранного переноса веществ, взаимодействуя с мембраной.
Внутриклеточные механизмы регуляции действуют как у одноклеточных организмов, так и в клетках многоклеточных организмов. Но у сложно устроенных многоклеточных организмов с дифференцированными органами, выполняющими специальные функции, возникает необходимость межорганной координации обмена веществ. Например, интенсивная работа мышц требует включения процессов мобилизации гликогена в печени или мобилизации жиров в жировой ткани. Межорганная координация обеспечивается передачей сигналов двумя путями: через кровь с помощью гормонов (эндокринная система) и через нервную систему. Эндокринная система - второй уровень регуляции. Она представлена железами (иногда отдельными клетка ми), синтезирующими гормоны---химические сигналы. Гормоны освобождаются в кровь в ответ на специфический стимул. 'Этим стимулом может быть нервный импульс или изменение концентрации определенного вещества в 'крови, протекающей через эндокринную железу "(например, снижение концентрации глюкозы). Гормон транспортируется с. кровью и, достигая клеток-мишеней, модифицирует в них обмен веществ через внутриклеточные механизмы, т. е. путем изменения активности или количества ферментов. В результате изменения обмена веществ устраняется стимул, вызвавший освобождение гормона (например, повышается концентрация глюкозы в крови). Выполнивший свою функцию гормон разрушается специальными ферментами. Третий уровень регуляции -- нервная система с рецепторами сигналов как внешний среды, так и внутренней. Сигналы трансформируются в волну деполяризации нервного волокна (нервный 'импульс), который в синапсе с клеткой-эффектором вызывает освобождение медиатора —- химического сигнала. Медиатор через внутриклеточные механизмы регуляции вызывает изменение обмена веществ. Клетками-эффекторами могут быть и некоторые эндокринные клетки, отвечающие на нервный импульс синтезом и выделением гормона. Все три уровня регуляции теснейшим образом взаимосвязаны и функционируют как единая
79. Гормоны. Классификация, их место в системе регуляции метаболизма. Механизм передачи гормонального сигнала в клетку.
1. Сложные белки — гликопротеины; к ним относятся: фолликулостимулирующий, лютеинизирующий, тиреотропный гормоны и др. 2. Простые белки: пролактин, соматотропный гормон (соматотропин, гормон роста), инсулин и др. 3. Пептиды: кортикотропин (АКТГ), глюкагон, кальцитонин, соматостатин, вазопрессин, окситоцин и др. 4. Производные аминокислот: катехоламины, тиреоидные гормоны, мелатонин и др. 5. Стероидные соединения и производные жирных кислот (простагландины). Стероиды составляют большую группу гормональных веществ; к ним относятся гормоны
система.
По биологич.ф-ям: 1-регулирующие обмен углеводов, жиров и АК(инсулин, глюкагон,адреналин, глбкокортикостероиды(кортизол). 2-регулирующие водно-солевой обмен(минералокортикостероиды,алдостерон,вазопрессин АДГ). 3-рег.обмен Са и фосфатов(паратгормон,кальцитонин, кальцитриол). 4-регюобмен в-в,связанный с репродуктивной ф-ей(эстрадиол, прогестерон, тестостерон). 5-рег.ф-ии эндокринных желез(тропные гормоны-кортикотропин, тиротропин,гонадотропин)
По механизму передачи сигнала в клетку-мишень гормоны можно разделить на две группы. Первую группу составляют пептидные гормоны и адреналин. Их рецепторы расположены на наружной поверхности плазматической мембраны, и гормон внутрь клетки не проникает. Эти гормоны (первые вестники сигнала) передают сигнал посредст вом второго вестника, роль которого выполняет цАМФ. После присоединения гормона к рецептору следует цепь событий, из меняющих метаболизм клетки (например, включается каскадный механизм мобилизации гликогена и т. п.). Другую группу составляют стероидные гормоны и тироксин. Рецепторы этих гормонов находятся в цитозоле клетки. Гормон проникает из крови в клетку, соединяется с рецептором и вместе с ним транспортируется в ядро. Стероидные гормоны и тироксин изменяют обмен веществ,
влияя на транскрипцию, а следователь но, и на синтез белков.
80. Регуляция обмена аминокислот, жиров и углеводов. Изменение концентрации гормонов в зависимости от ритма питания. Изменение гормонального статуса и метаболизма при голодании и действии других экстремальных факторов.
Регуляция обмена амин.к-т., жиров, углеводов. метаболические пути углеводов, жиров и аминокислот часто переплетаются. Взаимосвязь обмена этих групп веществ проявляется в наличии общего для них пути катаболизма и в возможности их взаимопревращений. Возможностью взаимопревращений объясняется частичная взаимозаменяемость углеводов, липидов и белков (аминокислот) в питании. С этим же связана неэффективность попыток лечения ожирения без жировой диетой. Следует отметить необратимость превращения пирувата и аминокислот в ацетил-КоА. Это означает, что апетил-КоА в орга-
низме человека не может быть использован для синтеза глюкозы, глицерина, аминокислот. Жирные кислоты при окислении пре вращаются в ацетил-КоА, следовательно, использование жирных кислот для синтеза углеводов тоже невозможно. Значительная масса углеводов, жиров и аминокислот расходуется в качестве источников энергии. Особенно это относится к углеводам: на их долю приходится половина или больше всего количества потребляемой пищи, а содержание углеводов в организме составляет лишь '/2 часть от всех других компонентов (вода в расчет не принимается). Основными энергоносителями, которые через кровоток распределяются по органам, служат глюкоза, жиры липопротеинов, жирные кислоты и кетоновые тела .. Главными их продуцентами являются печень и жировая ткань; потребляют эти энергоносители все органы, но в количественном отношении первое место принадлежит мышечной ткани вследствие ее значительной массы. В зависимости от состава пищи, ритма питания, физиологи ческой активности происходит изменение скоростей превращений углеводов, жиров, аминокислот и переключение с использования одного из них на использование другого. Эти перестройки метаболизма регулируются гормонами
Ацетон не используется в организме и выводится главным образом с выдыхаемым воздухом и через кожу: уже на третий-четвертый день ощущается запах ацетона изо рта и от кожи голодающего человека. В этой фазе энергетические потребности мышц и большинства других органов удовлетворяются за счет жирных кислот и кетоновых тел. Поскольку концентрация инсулина в крови при голодании очень низка, глюкоза в мышечные клетки не проникает. Потребителями глюкозы в этих условиях становятся только инсулинонезависимые клетки и прежде всего клетки мозга. Однако и в мозге в этом периоде часть энергетических потребностей обеспечивается кетоновыми телами. Глюконеогенез продолжается за счет распада тканевых белков. Интенсивность обмена веществ в целом снижена: через неделю голодания потребление кислорода уменьшается примерно на 40%.
Третья фаза продолжается несколько недель. Скорость распада белков стабилизируется на уровне примерно 20 г в сутки; при распаде такого количества белков образуется и выводится около 5 г мочевины в сутки (при обычном питании 25—30 г). Азотистый баланс во все фазы голодания отрицательный, поскольку поступление азота равно нулю. Соответственно снижению скорости распада белков уменьшается и скорость глюконеогенеза. В этой фазе и для мозга основным источником энергии становятся кетоновые тела. Если в этой фазе ввести аланин или другие гликогенные аминокислоты, немедленно повышается концентрация глюкозы в крови и снижается концентрация
81. Инсулин. Строение, образование, функции, механизм действия, инактивация. Изменения концентрации инсулина в зависимости от ритма питания.
биосинтез инсулина осуществляется в β-клетках панкреатических островков из своего предшественникапроинсулина. Проинсулин лишен биологической, т.е. гормональной, активности. Проинсулин превращается в инсулин путем частичного протеолиза .
Синтез и секреция инсулина регулируются глюкозой. Концентрация инсулина в крови человека в постабсорбтивном состоянии равна 1,3-10 моль/л. И после приема пищи или раствора сахарозы концентрация глюкозы в крови повышается, что приводит к увеличению концентрации инсулина.
Инсулин увеличивает проницаемость плазматической мембраны для глюкозы и некоторых аминокислот. Многие клетки нуждаются в инсулине для переноса глюкозы через мембрану внутрь клетки; наиболее важным исключением являются клетки мозга. Независимо от влияния на проницаемость инсулин стимулирует синтез гликогена в печени и мыцщах, синтез жиров в печени и жировой ткани, синтез белков в печени, мышцах и других органах. Все эти изменения направлены на ускоренное использование глюкозы, что приводит к снижению концентрации глюкозы в крови. Концентрация аминокислот также снижается (вследствие стимуляции синтеза белков), а концентрация липопротеинов увеличивается (вследствие стимуляции синтеза жиров в печени). Главные органы-мишени для инсулина •— печень, мышцы и жировая ткань. До сих пор неизвестны первичные пункты действия инсулина. Для многочисленных изменений обмена, наблюдаемых при введении инсулина, не удается установить причинно-следственные отношения.
При низкой концентрации глюкозы инсулин перестает выделяться в кровь, а уже имеющийся разрушается главным образом в печени — при однократном прохождении крови через печень разрушается около 80% инсулина
82. Сахарный диабет. Важнейшие изменения гормонального статуса и метаболизма при диабете. Биохимические механизмы формирования симптомов болезни и развития диабетической комы.
Сахарный диабет — одна из самых распространенных болезней: в мире насчитывается около 30 млн. больных диабетом. В основе болезни — нарушение регуляции обмена инсулином. При некоторых формах диабета снижен синтез инсулина, и его концентрация в крови в несколько раз меньше, чем в норме. Такие формы поддаются лечению инсулином: это так называемый инсулинозависимый диабет, или диабет 1 типа. Есть формы, когда содержание -инсулина в крови нормально — инсулинонезависимьш диабет, или диабет II типа', очевидно, в этих случаях имеются нарушения не синтеза инсулина, а других звеньев инсулиновой регуляции.
Все формы проявляются как недостаточность инсулина. Рассмотрим основные симптомы диабета и биохимические механизмы их возникновения.
Гиперглюкоземия и глюкозурия. Вследствие недостаточности инсулина ослаблены все процессы использования глюкозы тканями. Глюкоза, всасывающаяся из кишечника, накапливается в крови в больших концентрациях и надолго задерживается в ней. Адреналин, кортизол, глюкагон являются антагонистами инсулина в отношении влияния на концентрацию глюкозы в крови. Эти гормоны при диабете продолжают действовать и усугубляют гиперглюкоземию.
2Концентрация глюкозы в крови после приема пищи превышает величины, характерные для нормальной алиментарной гиперглюкоземии (см. рис. 134), и может достигать 500 мг/дл. Гиперглюкоземия сохраняется и в постабсорбтивном состоянии. Самые легкие формы диабета проявляются гиперглюкоземией лишь после приема пищи, т. е. снижением толерантности к глюкозе (обнаруживается методом сахарной нагрузки). Это так называемый скрытый диабет.
Когда концентрация глюкозы в крови превышает почечный порог (180 мг/дл), глюкоза начинает выделяться с мочой (глюкозурия). В норме концентрация глюкозы в моче 10—20 мг/дл; при диабете она увеличивается в десятки раз. В норме за сутки с мочой выводится меньше 0,5 г глюкозы; при диабете может выводиться больше 100 г. Именно глюкозурия послужила основанием для названия болезни — diabetes mellitus (от лат. diabetes — прохожу через, rnelle — мед). Название возникло в те времена, когда врачи, анализируя мочу, пробовали ее на вкус.
2. Кетонемия и кетонурия. Вследствие недостаточности инсулина уменьшается отношение инсулин/глюкагон, т. е. имеется относительная избыточность глюкагона. По этой причине печень постоянно функционирует в режиме, который у здоровых людей характерен для постабсорбтивного состояния, т. е. интенсивно окисляет жирные кислоты и продуцирует кетоновые тела. Поскольку глюкоза при недостаточности инсулина усваивается клетками плохо, значительная часть потребностей организма в энергии обеспечивается за счет использования кетоновых тел. При диабете кетонемия часто бывает 100 мг/дл, а может достигать и 350 мг/дл. При такой кетонемии возникает и кетонурия — с мочой выделяется до 5 г кетоновых тел в сутки. В тканях происходит декарбоксилирование ацетоуксусной кислоты: от больных исходит запах ацетона, который ощущается даже на расстоянии.
Кетоновые тела, являясь кислотами, снижают буферную емкость крови, а при высоких концентрациях снижают и рН крови — возникает ацидоз. В норме рН крови равна 7,4чь0,04. При содержании кетоновых тел 100 мг/дл и больше рН крови может быть близко к 7,0. Ацидоз такой степени резко нарушает функции мозга, вплоть до потери сознания.
3. Азотемия и азотурия. При недостаточности инсулина снижается синтез белков и соответственно увеличивается катаболизм аминокислот. В связи с этим у больных повышена концентрация мочевины в крови и увеличено ее выведение с мочой.
4. Полиурия и полидипсия. Концентрационная способность почек ограничена, поэтому для выведения больших количеств глюкозы, кетоновых тел и мочевины при диабете требуется выделение больших количеств воды. Больные выделяют мочи в 2—3 раза больше, чем в норме (полиурия). Соответственно и потребление воды у них увеличивается (полидипсия). При тяжелых формах диабета может наступить обезвоживание организма: в результате выделения больших количеств мочи уменьшается объем крови; в нее поступает вода из межклеточной жидкости; межклеточная жидкость становится гиперосмоляльной и “всасывает” воду из клеток. Быстро развиваются внешние признаки дегидратации — сухие слизистые оболочки, дряблая и морщинистая кожа, запавшие глаза. Кровяное давление при этом падает, и поэтому ухудшается снабжение тканей кислородом.
Ацидоз, вызванный накоплением кетоновых тел, и дегидратация — наиболее грозные симптомы диабета. Они являются предшественниками диабетической комы — резкого нарушения всех функций организма с потерей сознания. Больного, находящегося в предкоматозном или коматозном состоянии, можно спасти введением в кровь инсулина и больших количеств физиологического раствора.
Здесь рассмотрены наиболее характерные симптомы диабета. Существует много форм диабета, различающихся как по тяжести, так и по набору симптомов. В регуляции обмена углеводов, жиров и аминокислот участвуют не только те гормоны, о которых здесь шла речь, но и ряд других — соматотропин, соматостатин, тироксин, половые гормоны. Различные состояния этих систем у разных людей создают разнообразие форм диабета. Кроме того, проявления диабета могут быть разными в зависимости от того, в каком звене нарушена инсулиновая регуляция это может быть снижение скорости синтеза или секреции инсулина на любом из многочисленных этапов процесса или увеличение скорости инактивации инсулина в печени и крови, или нарушение его связывания с рецепторами. В первых двух случаях концентрация инсулина в крови снижена (в 2—10 раз, диабет 1 типа), в третьем случае нормальна или даже больше нормы (диабет II типа).
Частота заболеваемости диабетом среди родственников больных выше, чем в случайной подборке людей. Это свидетельствует о наследственной предрасположенности к диабету; предрасположенность наследуется как рецессивный признак. С другой стороны, заболеваемость зависит и от условий существования, прежде всего от питания: высококалорийная, богатая жирами и углеводами пища способствует проявлению болезни у предрасположенных к ней людей.
Основным методом лечения диабета является заместительная терапия, т. е. систематическое введение недостающего гормона.
83. Регуляция водно-солевого обмена. Строение, метаболизм и механизм действия вазопрессина и альдостерона. Ренин-ангиотензиновая система. Биохимические механизмы развития почечной гипертензии, отеков, обезвоживания.
Вода и растворенные в ней вещества, в том числе минеральные соли, создают внутреннюю среду организма, свойства которой сохраняются постоянными или изменяются закономерным образом при изменении функционального состояния органов и клеток.
Вода тканей является не просто растворителем или инертным компонентом: она выполняет существенную структурную и функциональную роль. Например, взаимодействие белков с водой обеспечивает их конфирмацию с преимущественным расположением гидрофильных групп на поверхности белковой глобулы, а гидрофобных — внутри. Еще большее значение имеет вода для структурной организации биологических мембран и их основы — двойного липидного слоя, в котором гидрофильные поверхности каждого монослоя взаимодействуют с водой, отграничивая от нее гидрофобное пространство внутри мембраны, между монослоями.
Вода служит средством транспорта веществ как в пределах клетки и окружающего ее многоклеточного вещества, так и между органами (кровеносная и лимфатическая системы). Подавляющая часть химических реакций в организме происходит с веществами, растворенными в воде. Во многих химических превращениях вода служит реагентом: это реакции гидролиза, гидратации, дегидратации, образование воды при тканевом дыхании, гидроксилазных реакциях; у растений происходит фотоокисление воды, и образующийся при этом водород используется для восстановления углекислого газа при фотосинтезе.
Почти 1\3 массы тела человека приходится на воду. Суточное потребление воды составляет около 2 л, к этому добавляется 0,3—0,4 л метаболической воды, образующейся при тканевом дыхании. При отсутствии питья человек погибает через несколько суток в результате дегидратации тканей, когда количество воды в организме уменьшается примерно на 12%.
Основными параметрами жидкой среды организма являются осмотическое давление, рН и объем. Осмотическое давление и рН межклеточной жидкости и плазмы крови одинаковы; они также одинаковы в межклеточной жидкости разных органов. С другой стороны, значение рН внутри клеток разных типов может быть различным; оно может быть различным и в разных отсеках одной клетки. Различие рН объясняется особенностями метаболизма, механизмами активного транспорта, избирательной проницаемостью мембран. Однако значение рН, характерное для данного типа клеток, поддерживается на постоянном уровне; повышение или понижение рН приводит к нарушению функций клетки. Поддержание постоянства внутриклеточной среды обеспечивает постоянством осмотического давления, рН и объема межклеточной жидкости и плазмы крови. В свою очередь постоянство параметров внеклеточной жидкости определяется действием почек и системы гормонов, регулирующих их функцию.
Осмотическое давление внеклеточной жидкости в значительной мере зависит от соли (NaCL), которая в этой жидкости содержится в наибольшей концтатрации . Поэтому основной механизм регуляции осмотического давления связан с изменением скорости выделения либо воды, либо NaCl Регуляция объема происходит путем одновременного изменения скорости выделения и воды, и NaCI. Кроме того, мёханизм жажды регулирует потребление воды. Регуляция рН обеспечивается избирательным выделением кислот или щелочей с мочой; рН мочи в зависимости от этого может изменяться в пределах от 4,6 до 8,0.
С нарушением водно-солевого гомеостаза связаны такие патологические состояния, как дегидратация тканей или отеки, повышение или снижение кровяного давления, шок, ацидоз, алкалоз.
Вазопрессин синтезируется в нейронах гипоталамуса, по аксонам
транспортируется в заднюю долю гипофиза и секретируется из окончаний этих аксонов в кровь. Осморецепторы гипоталамуса при повышении осмотического давления тканевой жидкости стимулируют освобождение вазонрессина из секреторных гранул. Вазопрессин увеличивает скорость реадсорбции воды из первичной мочи и тем самым уменьшает диурез. Моча при этом становится более концентрированной. Таким путем антидиуретический гормон сохраняет необходимый объем жидкости в организме, не влияя на количество выделяемого NaCI. Осмотическое давление внеклеточной жидкости при этом уменьшается, т. е. ликвидируется стимул, который вызвал выделение вазопрессина.
При некоторых болезнях, повреждающих гипоталамус или гипофиз (опухоли, травмы, инфекции), синтез и секреция вазопрессина уменьшаются.
Кроме снижения диуреза вазопрессин вызывает также сужение артериол и капилляров , а следовательно, и повышение кровяного давления. Это действие обнаруживается лишь при достаточно высокой концентрации вазопрессина и, вероятно, не имеет физиологического значения.
Альдостерон. Этот стероидный гормон вырабатывается, в коре. надпочечников; он содержит альдегидную группу, что нашло отражение в его названии. Суточная секреция альдостерона измеряется микрограммами. Секреция увеличивается при снижении концентрации NaCI в крови. В почках Альдостерон увеличивает скорость pea6cop6ции в канальцах нефронов, что вызывает задержку NaCI в организме, Тем самым устраняется стимул, который вызвал секрецию альдостерона.
Избыточная секреция альдостерона {гиперальдостеронизм) приводит, соответственно, к избыточной задержке NaCI и повышению осмотического давления внеклеточной жидкости. А это служит сигналом освобождения вазопрессина, который ускоряет реабсорбцию воды в почках. В результате в организме накапливается и NaCI, и вода; объем внеклеточной жидкости увеличивается при сохранении нормального осмотического давления. Ежедневное введение альдостерона человеку приводит к дополнительному накоплению в организме до 400 ммоль NaCI (около Юг) и до “3 л воды, после чего дальнейшее накопление прекращается. В результате увеличения объема внеклеточной жидкости повышается кровяное давление.
Система ренин — ангиотензин. Эта система служит главным механизмом регуляции секреции альдостерона; от нее зависит также и секреция вазопрессина.
Ренин представляет собой протеолитический фермент, синтезирующийся в юкстагломерулярных клетках, окружающих приносящую артериолу почечного клубочка. Юкстагломерулярные клетки являются рецепторами растяжения стенки артериолы; снижение кровяного давления в приносящих артериолах служит сигналом секреции ренина в кровь. ' \
Субстратом ренина является ангиотензиноген — гликопротеин крови, синтезирующийся в печени. Ренин гидролизует пептидную связь между Leu 10 и Leu II в молекуле ангиотензиногена, и от нее отщепляется N-концевой декапептид ангиотензин 1. Последний превращается в ангиотензин II (октапептид) при действии карбоксидипептидилпептидазы, отщепляющей дипептид His—Lei с карбоксильного конца ангиотензина 1. Карбоксидипептидил-пептидаза имеется в плазматической мембране эндотелия кровеносных сосудов; особенно высока активность этого фермента легких. Ангиотензин II — наиболее мощное из известных сосудосуживающих веществ; вследствие этого действия он повышает кровяное давление. Кроме того, ангиотензин II стимулирует освобождение альдостерона, а также вазопрессина, и вызывает жажду Эти свойства ангиотензина II определяют его роль в регуляции водно-солевого обмена.
Ренин-ангиотензиновая система играет важную роль при восстановлении объема крови, который может уменьшиться результате кровотечения, обильной рвоты, поноса (диарея) . Сужение сосудов под действие ангиотензина II играет роль экстренной меры для поддержания кровяного давления. Затем поступающие с питьем и пищей вод и NaCI задерживаются в организме в большей мере, чем в норме, что обеспечивает восстановление объема и давления крови
Снижение перфузионного давления в почечных клубочках может наступить и вследствие сужения (стеноза) почечной артерии. В этом случае также включается вся система, представленная на рис. 128. Однако, поскольку исходные объем и давление крови при этом нормальны, включение системы приводит к повышению кровяного давления сверх нормы как вследствие сужения сосудов ангиотензином II, так и вследствие хронической задержки воды и NaCI. Эту форму гипертонии называют почечной.
84. Кальций и фосфор. Биологические функции, распределение в организме. Регуляция обмена. Гипо- и гиперкальциемия. Рахит.
Основные функции кальция заключаются в следующем:
1) соли кальция образуют минеральный компонент костей;
2) ионы кальция являются кофакторами многих ферментов и не ферментных белков;
3) ионы кальция во взаимодействии с белком кальмодулином служат посредником в передаче регуляторных сигналов (подобно цАМФ). Поскольку концентрация комплекса зависит от концентрации Са, активность фермента тоже зависит от концентрации Са в клетке. При снижении концентрации Са происходит распад активного комплекса и снижение активности фермент.
Таким способом регулируется активность фосфодиэстеразы цАМФ, липаз, некоторых протеинкиназ, в том числе киназы фосфорилазы б.
Концентрация Са в клетке зависит от Са-АТФазы, кальциевых каналов и от концентрации Са во внеклеточной жидкости, а в последней она регулируется гормонами.
В организме взрослого человека содержится около 1,5 кг кальция, который образует два неравных фонда. Один из них — это кальций костей. В состав костей входит 99% всего кальция организма, 87% фосфора, около 60% магния и примерно 25% натрия. Кальций в костях находится в форме минерала гидро-ксиапатита. Минеральные компоненты кости составляют половину ее массы; другая половина образована органическим матриксом, который на 90% состоит из коллагена. Поскольку минеральная часть кости имеет большую плотность, на нее приходится только четверть объема кости.
Другой фонд кальция в организме — это ионы Са^, растворенные в жидкостях или соединенные & белками жидкостей и тканей. Между обоими фондами происходит постоянный обмен кальцием.
Обмен кальция тесно связан с обменом фосфорной кислоты, образующей с кальцием ПЛОХО растворимые соли В регуляции обмена кальция участвуют паратгормон, производные витамина Вз и кальцитонин.
ПАРАТГОРМОН
Параттормон — это пептидный гормон (84 аминокислотных остатка), образующийся в паращитовидных железах, расположенных на задней поверхности щитовидной железы. Его синтез и секреция стимулируются при снижении концентрации Са в крови и подавляются при повышении. Период полжизни паратгормона в крови человека составляет примерно 20 мин.
Основными органами-мишенями паратгормона являются кости и почки. Мембраны клеток этих органов содержат специфические рецепторы, улавливающие паратгормон, которые связаны с аденилатциклазой. .
КАЛЬЦИТОНИН
Пептидный гормон кальцитонин (32 аминокислотных остатка) синтезируется в С-клетках паращитовидных и щитовидной желез. Секреция кальцитонина увеличивается при возрастании содержания кальция в крови; таким образом, паратгормон и кальцитонин регулируются кальцием противоположным образом. Основной орган-мишень для кальцитонина — кости, в которых он подавляет мобилизацию кальция
При гипокальциемии наблюдаются судороги, гиперрефлексы, спазмы гортани, которые могут быть причиной смерти от асфиксии. Эти явления — следствие снижения порога возбуждения нервных и мышечных клеток: нерв может быть возбужден даже легким стимулом в любом месте его протяжения. Тяжелая гипокальциемия бывает редко. Наиболее частая ее причина — это гипопаратиреоз, вызванный повреждением паращитовидных желез при операциях на щитовидной железе. Кроме того, гипокальциемия может быть следствием нарушения всасывания кальция в кишечнике, например, при гиповитаминозе D, при большом содержании в пище оксалата или других соединений, связывающих кальций.
При гиперкальциемии снижается нервно-мышечная возбудимость; если концентрация кальция в крови достигает 16 мг/дл, наступает глубокое расстройство нервных функций — психозы, ступор и даже кома. Характерными симптомами гиперкальциемии являются кальцификация мягких тканей и образование камней в мочевых путях. Чаще всего причиной гиперкальциемии бывает гиперпаратиреоз как результат образования опухоли из клеток паращитовидных желез; гиперкальциемия бывает также при передозировке витамина D.
85. Глюкокортикоиды. Строение, условия синтеза. Влияние на обмен белков, липидов и углеводов в тканях-мишенях. Гипо – и гиперфункция гормонов.
Глюкокортикоиды оказывают разностороннее влияние на обмен веществ в разных тканях. В мышечной, лимфатической, соединительной и жировой тканях глюкокортикоиды проявляют катаболическое действие и вызывают снижение проницаемости клеточных мембран и соответственно торможение поглощения глюкозы и аминокислот; в то же время в печени они оказывают противоположное действие. Конечным итогом действия глюкокортикоидов является развитие гипергликемии, обусловленной главным образом глюконеогенезом. Механизм развития гипергликемии после введения глюкокортикоидов включает, кроме того, снижение синтеза гликогена в мышцах, торможение окисления глюкозы в тканях и усиление распада жиров.
В ткани печени доказано индуцирующее действие кортизона и гидрокортизона на синтез некоторых белков-ферментов: триптофанпирролазы, тирозинтрансаминазы, и треониндегидратаз и другие, свидетельствующее, что гормоны действуют на первую стадию передачи генетической информации — стадию транскрипции, способствуя синтезу мРНК
86. Строение, синтез и метаболизм гормонов щитовидной железы. Влияние на обмен веществ. Гипо- и гипертиреозы.
Гормоны щитовидной железы
Щитовидная железа играет исключительно важную роль в обмене веществ. Об этом свидетельствуют резкое изменение основного обмена, наблюдаемое при нарушениях деятельности щитовидной железы, а также ряд косвенных данных, в частности обильное ее кровоснабжение, несмотря на небольшую массу (20—30 г). Щитовидная железа состоит из множества особых полостей — фолликулов, заполненных вязким секретом - коллоидом. В состав этого коллоида входит особый йодсодержащий гликопротеин с высокой молекулярной массой (порядка 650 000 Да), получивший название йодтиреоглобулина; он представляет собой запасную форму тироксина— основного гормона фолликулярной части щитовидной железы.
Помимо этого гормона (биосинтез и функции которого будут рассмотрены ниже), в особых клетках - так называемых парафолликулярных, или С-клетках щитовидной железы, — синтезируется гормон пептидной природы, обеспечивающий постоянную концентрацию кальция в крови и получивший соответственно название каль- цитонина.В настоящее время кальцитонин не только выделен в чистом виде из ткани щитовидной железы животных и человека, но и полностью раскрыта 32-членная аминокислотная последовательность, подтвержденная химическим синтезом.
Точкой приложения действия тиреоидных гормонов считаются внутриклеточные рецепторы — белки, обеспечивающие транспорт тиреоидных гормонов в ядро и взаимодействие со специфическими генами; в результате увеличивается синтез ферментов, регулирующих скорость окислительно-восстановительных процессов. Естественно поэтому, что недостаточная функция щитовидной железы (гипофункция) или, наоборот, повышенная секреция гормонов (гиперфункция) вызывает глубокие расстройства физиологического статуса организма.
Гипофункция щитовидной железы в раннем детском возрасте приводит к развитию болезни, известной в литературе' как кретинизм. Помимо остановки роста, специфических изменений со стороны кожи, волос, мышц, резкого снижения скорости процессов обмена, при кретинизме отмечаются глубокие нарушения психики; специфическое гормональное лечение в этом случае не дает положительных результатов.
Недостаточная функция щитовидной железы в зрелом возрасте сопровождается развитием гипотиреоидного отека, или микседемы (от греч. туха - слизь, oedemo - отек). Это заболевание чаще встречается у женщин и характеризуется нарушением водно-солевого, основного и жирового обменов. У больных отмечаются слизистый отек, патологическое ожирение, резкое снижение основного обмена, выпадение волос и зубов, общие мозговые нарушения и психические расстройства. Кожа становится сухой, температура тела падает; в крови повышено содержание глюкозы. Гипотиреоидизм сравнительно легко поддается лечению препаратами щитовидной железы.
Следует отметить еще одно поражение щитовидной железы, получившее название эндемического зоба. Болезнь обычно развивается у лиц, проживающих в горных местностях, где содержится недостаточно йода в воде и растениях. Недостаток йода приводит к компенсаторному увеличению массы ткани щитовидной железы за счет преимущественного разрастания соединительной ткани, однако этот процесс не сопровождается увеличением секреции тиреоидных гормонов. Болезнь не приводит к серьезным нарушениям функции организма, хотя увеличенная в размерах щитовидная железа создает определенные неудобства. Лечение в данном случае сводится к обогащению продуктов питания, в частности поваренной соли, неорганическим йодом.
Повышенная функция щитовидной железы (гиперфункция) вызывает развитие и пертиреоз а, известного в литературе под названием зоб диффузный токсический (болезнь Грейвса или базедова болезнь). Резкое повышение обмена веществ сопровождается усиленным распадом тканевых белков, что приводит к развитию отрицательного азотистого баланса.
Наиболее характерным проявлением болезни считается триада симптомов: резкое увеличение числа сердечных сокращений (тахикардия), пучеглазие (экзофтальм) и зоб, т. е. увеличенная в размерах щитовидная железа; у больных развиваются общее истощение организма, а также психические расстройства
87. Катехоламины. Строение, биосинтез, биологические функции, нарушения обмена, последствия.
Биосинтез катехоламинов. В мозговом веществе надпочечников и нервной ткани тирозин служит предшественником катехоламинов, важнейшими из которых являются дофамин, норадреналин и адреналин. Дофамин и норадреналин выполняют функции медиаторов в синаптической передаче нервного импульса; адреналин — это гормон мозгового вещества надпочечников, который, в частности, стимулирует мобилизацию депонированных углеводов и жиров.
Инактивация катехоламинов происходит в основном двумя путями. Первый путь — метилирование по гидроксильной группе в третьем положении: донором метильной группы служит S-аде-нозилметионин . Второй путь связан с дезаминированием катехоламинов при действии моноаминоксидазы: в результате дезаминирования катехоламин превращается в катехолимин, который спонтанно гидролизуется с образованием альдегида и аммиака. Таким образом, моноаминоксидаза катализирует дегидрирование амина, причем акцептором водорода служит кислород; пероксид водорода затем разрушается каталазой.
88. Центральная регуляция эндокринной системы: роль либеринов, статинов, тропных гормонов гипофиза.
. Либерины и статины, секреция которых в гипоталамусе стимулируется нервным импульсом, проходят небольшой путь до гипофиза, и, действуя через специфические рецепторы мембран, стимулируют или ингибируют секрецию гормонов гипофизарными клетками.
В гипофизе синтезируется ряд биологически активных гормонов белковой и пептидной природы, оказывающих стимулирующий эффект на различные физиологические и биохимические процессы в тканях-мишенях (табл. 8.2). В зависимости от места синтеза различают гормоны передней, задней и промежуточной долей гипофиза. В передней доле вырабатываются в основном белковые и полипептидные гормоны, называемые тропнымигормонами, или тропинами, вследствие их стимулирующего действия на ряд других эндокринных желез. В частности, гормон, стимулирующийсекрецию гормонов щитовидной железы, получил название «тиротропин».
89. Стероидные гормоны. Биосинтез, катаболизм, биологические функции. Проявления недостаточности и избытка гормонов.
Стероидные гормоны представляют собой группу соединений, родственных по происхождению и структуре; все они образуются из холестерина. Промежуточным продуктом при синтезе стероидных гормонов служит прегненолон. Прегненолон образуется во всех органах, синтезирующих любые стероидные гормоны. Далее пути превращения расходятся: в коре надпочечников образуются глюкокортикостероиды и минералокортикостероиды в семенниках—мужские половые гормоны , в яичниках—женские половые гормоны .
Прегненолон может превратиться в одно из четырех соединений — прогестерон или гидроксипрегненолоны с различным расположением гидроксигрупп. Из этих соединений затем образуются разные стероидные гормоны, причем каждый из них может синтезироваться больше, чем одним путем. За большинством стрелок на схеме скрывается не одна, а от двух до четырех реакций; кроме того, указаны не все возможные пути синтеза. В целом пути синтеза стероидных гормонов образуют довольно сложную сетку реакций. Многие промежуточные продукты этих путей также обладают некоторой гормональной активностью, причем часто одно и то же вещество проявляет активность в регуляции разных процессов — обмена углеводов, водно-солевого баланса, репродуктивных функций. Однако основными стероидами, определяющими состояние этих метаболических и функциональных систем, служат кортизол (регуляция обмена углеводов и аминокислот), Альдостерон (регуляция водно-солевого обмена), тесто-стерон, эстрадиол и прогестерон (регуляция репродуктивных функций).
В результате инактивации и катаболизма стероидных гормонов образуется значительное количество стероидов, содержащих кетогруппу в положении 17 (17-кетостероиды). Эти вещества выводятся через почки. Суточная экскреция 17-кетостероидов у взрослой женщины составляет 5—15 мг, у мужчины 10—25 мг. Определение 17-кетостероидов в моче используется для диагностики: их выделение увеличивается при болезнях, сопровождающихся гиперпродукцией стероидных гормонов, и уменьшается при гипо-продукции.
90. Регуляция концентрации глюкозы в крови. Гипо- и гипергликемии, причины их возникновения. Определение толерантности к глюкозе.
Использование источников энергии обеспечивает экономное расходование глюкозы, что имеет важное значение, поскольку сберегает глюкозу для питания мозга и некоторых других зависимых от глюкозы тканей. Скорость поступления глюкозы в ткань мозга целиком зависит от ее концентрации в крови, поэтому поддержание этой концентрации на достаточном уровне — необходимое условие нормального питания и функционирования мозга.
Концентрация глюкозы в крови определяется балансом скоростей ее поступления в кровь, с одной стороны, и потребления тканями—с другой . В постабсорбтивном состоянии в норме концентрация глюкозы в крови равна 60—100_ мг\дл (3,3—5,5 ммоль/л); более высокая концентрация указывает на нарушение обмена углеводов. После приема пищи или раствора сахара—(сахарная нагрузка) гиперглюкоземия бывает и у здоровых людей —ллиментарная Обычно она не превышает 15ммоль\л и начинает снижаться через 1—1,5 ч после еды. При нарушениях углеводного обмена (стероидный диабет, сахарный диабет) алиментарная гиперглюкоземия превышает 150 мг/дл и держится дольше.
Толерантность к глюкозе измеряют с целью 1 диагностики нарушений углеводного 'обмена^ Обследуемому дают 'выпить j^:TBOJ3\axaga_H3—расцета--1^1__на . 1^г1массь1Т£да^сдха^зйаа_^шгр^.з-1 ка) и через каждые 30 мин берут •~ пробы крови для определения кон-1 центрации глюкозы. Типичные ре-[ зультаты измерения толерантности приведены на рис. 134.
Если гиперглюкоземия превы-1 шает почечный порог, т. е. величи-1 ну 180 мг/дл, то глюкоза начинает 1 выводиться с мочои__(1люкоэурия). ? Глюкозурия свидетеДБ^гвует о нару-1 шении углеводного обмена или о
• повреждении почек.
1 Гипоглюкоземия также возникает при патологических состоя-1 ниях, в частности дри голодадии^ Снижение концентрации глю-1 козы в крови до 4(Гш7дл^1риводит к возникновению^судорог и 1 Других симптомов нарушения функций головного мозга вслёд-1 ствие нарушения его питания.
1 Переключение, метаболизма при смене периодов пищеварения 1и постабсорбтивного состояния и поддержание концентрации 1 глюкозы в крови обеспечиваются системой регуляторных меха-1 низмов, включающих гормоны кортизол, инсулин, глюкагон, ^ адреналин.