
- •Сборник лекций к дисциплинам:
- •§1. Краткие сведения по квантовой механике
- •§2. Уравнение Шредингера
- •§3. Энергетические состояния электронов в водородоподобных системах
- •Раздел 1. Основы физики полупроводников
- •1.1. Полупроводники
- •Энергетические (зонные) диаграммы полупроводников.
- •Уровень Ферми
- •Физические процессы в полупроводниках
- •Беспримесный полупроводник.
- •Процесс генерации пар зарядов.
- •Примеси в полупроводниках.
- •Электронный полупроводник (n-типа)
- •Дырочный полупроводник (р-типа).
- •1.2 Типы рекомбинации
- •1.3. Электронно-дырочный переход. §1. Классификация. Методы изготовления.
- •§2. Свойства р-n-перехода.
- •Учет дополнительных факторов, влияющих на вольт-амперную характеристику диода. Пробой.
- •Импульсные свойства р-n перехода. (динамические процессы в р-n-переходе)
- •Раздел 2. Полупроводниковые приборы
- •2.1. Полупроводниковые диоды
- •§ 1. Выпрямительные диоды.
- •§2. Высокочастотные диоды.
- •§ 3. Импульсные диоды.
- •§ 4. Сверхвысокочастотные диоды.
- •§ 5. Стабилитроны.
- •§ 6. Варикапы.
- •§ 8. Обращенные диоды.
- •§ 8. Система обозначений полупроводниковых диодов.
- •§ 9. Рабочий режим диода.
- •2.2. Биполярные транзисторы § 1. Общие сведения. Устройство.
- •§ 2. Физические процессы, протекающие вVt. ТокиVt.
- •§3. Основные схемы включения транзисторов.
- •§4 Влияние температуры на статические характеристикиVTа.
- •§5 Эквивалентные схемы замещения транзистора.
- •§6 Представление транзистора в виде четырехполюсника и системы статистических параметров.
- •2.3 Полевые транзисторы §1. Полевые транзисторы с управляющим переходом.
- •§2. Статические характеристики полевого транзистора с управляющимp-n-переходом.
- •§3. Полевые транзисторы с изолированным затвором.
- •2.4. Тиристоры (vs)
- •§ 1. Принцип действия.
- •§ 2. Математический анализ работы тиристора (не нужно).
- •§ 3. Вольт – амперная характеристика тиристора.
- •§ 4. Типы тиристоров.
- •§ 5. Особенности работы и параметры тиристоров.
- •2.5. Оптоэлектронные полупроводниковые приоры. Полупроводниковые излучатели
- •Фотоприемники (общие сведения)
- •Фоторезисторы
- •Фотодиоды
- •Фотоэлементы
- •Фототранзисторы
- •Фототиристоры
- •Оптроны
- •2.6. Интегральные микросхемы
- •Раздел 3. Усилители §1. Анализ процесса усиления электрических сигналов
- •§2. Работа уэ с нагрузкой. Динамические х-ки.
- •Нагруз. Линии у и их построение.
- •Сквозная характеристика у на биполярномVt.
- •Общие сведения.
- •Классификация у.
- •§4 Основные параметры и характеристики усилителей.
- •§5 Обратная связь в усилителях.
- •Режимы работы уэ.
- •Раздел 4. Операционные усилители Общие сведения
- •Инвертирующий усилитель
- •Интегратор
- •Содержание
Раздел 4. Операционные усилители Общие сведения
Операционный усилитель (ОУ) представляет собой высококачественный усилитель постоянного тока, применяемый для реализации различных функциональных операций таких, как сложение, вычитание, деление, логарифмирование, дифференцирование и другие. Благодаря интегральной технологии стало возможным изготовление ОУ, близкого по своим свойствам к идеальному. Такой усилитель имеет большой коэффициент усиления до 105, большое входное сопротивление до 106 Ом, малое выходное сопротивление порядка 100-200 Ом, малые собственные шумы и дрейф нуля. В настоящее время на основе интегральных ОУ выполняются генераторы синусоидальных и импульсных колебаний, источники опорных напряжений, избирательные фильтры, блоки сравнения и многие другие устройства.
В целом ОУ можно представить в виде трёх последовательно соединённых каскадов (рис.7.1).
Входным каскадом является дифференциальный усилитель ДУ, который работает в режиме микротоков, имеет малый дрейф нуля, высокое входное сопротивление и небольшой коэффициент усилений по напряжению порядка 10.
Второй каскад выполняет функции усилителя напряжения УН. Обычно он имеет коэффициент усиления по напряжению более 100 и малый дрейф нуля, что достигается благодаря использованию балансной схемы усилителя постоянного тока.
Оконечный каскад ОУ является усилителем мощности УМ. Он имеет коэффициент усиления по напряжению в пределах 5-50, малое выходное сопротивление и обеспечивает передачу в нагрузку максимальной мощности.
Дифференциальный усилитель имеет два входа: инвертирующий (вход 1) и не инвертирующий (вход 2). При поступлении входного синусоидального напряжения на инвертирующий вход с выхода ОУ будет сниматься усиленный сигнал противоположной полярности, т.е. инвертированный относительно входного. Напряжения на не инвертирующем входе и выходе ОУ совпадают по фазе. Для удобства чтения электрических схем инвертирующий вход обозначается знаком минус, а не инвертирующий - знаком плюс.
Схема включения дифференциального ОУ приведена на рис.7.2.
Здесь Uвх1 и Uвх2 - входные сигналы на инвертирующем и не инвертирующем входах; Rн - сопротивление нагрузки; Е1 и Е2 -источники питания.
В тех случаях, когда входной сигнал поступает на инвертирующий вход (Uвх2 = 0), амплитудная характеристика усилителя имеет вид кривой I (рис.7.3). С увеличением входного напряжения от - Uвхm до Uвхm выходное напряжение изменяется пропорционально входному.
При наличии сигнала на не инвертирующем входе (Uвхm =0) получаем амплитудную характеристику в виде кривой 2.
Симметричный вид амплитудной характеристики относительно начала координат, т.е. возможность работы усилителя как при положительных, так и при отрицательных входных напряжениях, обеспечивается использованием двух разнополярных, равных по величине источников питания Е1 и Е2.
Подключая между входами и выходом усилителя соответствующие цепи обратной связи, можно получить устройства с различными функциональными возможностями. Рассмотрим некоторые из них.