
- •Введение
- •1. Общие сведения об энергетических системах и электрических сетях. Классификация электрических сетей
- •2. Конструкции, назначение и основные характеристики электрооборудования лэп и пс
- •3. Режимы. Параметры режима и параметры сети. Схемы замещения
- •4. Схемы замещения лэп. Определение параметров схем замещения лэп
- •5. Характерные соотношения между параметрами лэп. Расчет режимов лэп при заданном токе и напряжении в конце линии. Векторные диаграммы
- •6. Падение и потеря напряжения в линии. Расчет режима лэп при заданной мощности нагрузки и напряжении в конце и начале линии
- •7. Схема замещения и параметры двухобмоточного трансформатора и трансформатора с расщепленной обмоткой низшего напряжения
- •8. Схема замещения и определение параметров трехобмоточного трансформатора
- •9. Схемы замещения и определение параметров автотрансформатора
- •10. Расчеты режимов электрических сетей. Расчетные схемы для разомкнутых и замкнутых электрических сетей. Понятие расчетной нагрузки
- •11. Расчет режимов электрических сетей с n-нагрузками. Расчет режимов кольцевых сетей
- •12. Совместный расчет режима сетей с разными номинальными напряжениями
- •13. Балансы мощностей в электроэнергетической системе. Компенсация реактивной мощности
- •14. Методы регулирования напряжения. Встречное регулирование напряжения
- •15. Определение номинального напряжения проектируемой сети. Особенности выбора и проверки сечений в разомкнутых и простых замкнутых сетях
- •16. Качество электроэнергии и его связь с балансом мощности
- •1.1. Общие сведения об энергетических системах и электрических сетях
- •1.2. Основные технические задачи, проблемы передачи и распределения электроэнергии
- •1.3. Объединенные энергосистемы, их преимущества
- •Задания для самостоятельной работы:
- •1.4. Классификация электрических сетей
- •1.5. Обозначения и некоторые сведения об электрических величинах
- •Задания для самостоятельной работы:
- •Характеристики оборудования линий электропередач и подстанций
- •Провода воздушной линии электропередач
- •Типы трансформаторов и их характеристики
- •Задания для самостоятельной работы:
- •Режимы и параметры системы и сети
- •Задания для самостоятельной работы:
- •Параметры электрических сетей
- •Линия электропередачи как элемент электрической сети
- •Погонные (удельные) параметры линий
- •Задания для самостоятельной работы:
- •Задания для самостоятельной работы:
- •Характерные соотношения между параметрами линий
- •Среднее значение проводимости для вл , выполненной одиночными проводами
- •Расчет режимов линий электропередач и электрических сетей
- •Расчет режима лэп при заданном токе нагрузки и напряжении в конце линии
- •Задания для самостоятельной работы:
- •Падение и потеря напряжения в линии
- •Расчет режимов линий электропередач и электрических сетей
- •При заданной мощности нагрузки
- •Расчет режима лэп при заданной мощности нагрузки и напряжении в конце линии
- •Расчет режима лэп при заданной мощности нагрузки и напряжении в начале линии
- •Задания для самостоятельной работы:
- •Схемы замещения трансформаторов
- •Двухобмоточный трансформатор
- •Опыт холостого хода
- •Опыт короткого замыкания
- •Задания для самостоятельной работы:
- •Задания для самостоятельной работы:
- •Трехобмоточный трансформатор
- •Автотрансформаторы
- •Автотрансформаторы
- •Задания для самостоятельной работы:
- •Расчеты режимов электрических сетей. Задачи расчета и расчетные режимы
- •Расчеты режимов электрических сетей.
- •Практическое применение нашли два основных метода расчета:
- •Расчетные схемы электрических сетей
- •1.3. Понятие расчетной нагрузки
- •Вычисление расчетной мощности подстанции предшествует расчету режима сети
- •Расчет режимов кольцевых сетей
- •Задания для самостоятельной работы:
- •Совместный расчет режима сетей нескольких номинальных напряжений
- •Послеаварийные режимы
- •Задания для самостоятельной работы:
- •Общие положения
- •Синхронные компенсаторы
- •Величина эдс Eq определяется величиной тока возбуждения. Росту тока возбуждения соответсвует увеличение эдс Eq.
- •Батареи конденсаторов
- •Методы регулирования напряжения
- •Встречное регулирование напряжения
- •Задания для самостоятельной работы:
- •Расчет режимов линий электропередач в послеаварийных режимах
- •Задания для самостоятельной работы:
- •Влияние качества электроэнергии на работу электроприемников и электрических аппаратов
- •Показатели качества электрической энергии
- •Баланс активной мощности и его связь с частотой
- •Баланс реактивной мощности и его связь с напряжением
- •Задания для самостоятельной работы:
- •Литература
Расчет режима лэп при заданном токе нагрузки и напряжении в конце линии
Будем считать, что режим конца линии задан фазным напряжением Uф=сonst и отстающим током нагрузки I2. Также заданы Z12=r12+jx12, в12.
Необходимо определить 1) напряжение в начале линии – U1,2) ток в продольной части – I12, 3) потери мощности - S12 4) ток в начале линии – I1.
Расчет состоит в определении неизвестных токов и напряжений, последовательно от конца линии к началу.
Емкостный ток в конце линии 1-2, по закону Ома:
Ток в продольной части линии 1-2, по первому закону Кирхгофа:
I12=I2+Iкс12: (2)
Напряжение в начале линии по закону Ома:
U1ф=U2ф+I12Z12: (3)
Емкостный ток в начале линии:
Ток в начале линии по первому закону Кирхгофа:
Потери мощности в линии (в трех фазах):
S12=3I212Z12: (6)
Векторная диаграмма токов и напряжений строится в соответствии с выражениями 1-5.
Вначале строим известные U2ф и I2.
Полагаем
что U2ф=U2ф,
т.е. напряжение U2ф
направлено по действительной оси.
Емкостный ток
опережает на 90о
напряжение U2ф.
Ток I12
соединяет начало первого и конец второго
суммируеммых векторов в правой части
урав.(2) [I12=I2+
]
Затем строим отдельно два слагаемых в правой части (3) [U1ф=U2ф+I12Z12]. I12Z12=I12r12+I12jx12 (7)
Вектор I12r12 I12, вектор I12jx12 опережает на 90о ток I12
Напряжение U1ф соединяет начало и конец суммируемых векторов U2ф, I12r12, I12jx12.
Ток
опережаетU1ф
на 90о.
I1
соответствует (5) I1=I12+
В линии с нагрузкой напряжение в конце линии по модулю меньше, чем в начале U2ф<U1ф.
На линии на холостом ходу (I2=0), течет только емкостной ток, т.к. в соответствии с формулой I12=I2+Iкс12 (2) I12=Iкс12
В этом случае напряжение в конце линии повышается U2ф>U1ф
Векторная диаграмма для такой линии:
Задания для самостоятельной работы:
1. Расчет режима ЛЭП при заданном токе нагрузки и напряжении в начале линии.
2. Анализ режимов ЛЭП в зависимости от соотношений параметров их схем замещения, режимов передачи активной и реактивной мощности, рабочих напряжений в начале и в конце линий.
Лекция 6. Падение и потеря напряжения в линии. Расчет режима ЛЭП при заданной мощности нагрузки и напряжении в конце и начале линии.
Падение и потеря напряжения в линии. Продольная и поперечная составляющие падения напряжения
Расчет режима ЛЭП при заданной мощности нагрузки и напряжении в конце линии
Расчет режима ЛЭП при заданной мощности нагрузки и напряжении в начале линии: использование нелинейного уравнения узловых напряжений
Расчет режима ЛЭП при заданной мощности нагрузки и напряжении в начале линии: использование приближенного расчета в два этапа
Падение и потеря напряжения в линии
Различие в напряжениях U2ф и U1ф в П-образной схеме определяется падением напряжения на сопротивлении Z12 (Z12+jx12), вызванным током I12. Определяется это падением напряжения как сумма вектора I12r12, совпадающего по фазе с вектором I12 и вектора I12jx12, опережающего вектор I12 на 90о.
Падение
напряжения
– геометрическая (векторная) разность
между комплексами напряжений начала и
конца линий.
На
рис. падение напряжения это вектор
,
т.е.
разность комплексных значений по концам линий, используется для характеристики режима линии.
Продольной составляющей падения напряжения Uк12 называют проекцию падения напряжения на действительную ось или на напряжение U2, Uк12=АС. Индекс “к” означает , что Uк12 – проекция на напряжение конца линии U2.
Обычно Uк12 выражается через данные в конце линии: U2, Pк12, Qк12.
Поперечная
составляющая падения
напряжения Uк12
– это проекция падения напряжения на
мнимую ось, jUк12=СВ.
Т. о. U1-U2=I12Z12=Uк12+jUк12.
Величина Uк12 определяет сдвиг вектора напряжения в начале линии (U1) на угол по отношению к вектору напряжения в ее конце (U2).
Часто используют понятие потеря напряжения – это алгебраическая разность между модулями напряжений начала (U1) и конца (U2) линий.
На рис. U1– U2=АД.
Если поперечная составляющая Uк12 мала (например, в сетях Uном 110кВ), то можно приближенно считать, что потеря напряжения равна продольной составляющей падения напряжения.
Потеря напряжения является показателем изменения относительных условий работы потребителей в начале и в конце линии.