- •Министерство образования и науки
- •Свойства электроэнергии
- •Цель и задачи курса
- •Электрическая сеть, как часть электрической системы
- •Номинальные напряжения
- •Область использования номинальных напряжений
- •Воздушные линии электропередас (влеп)
- •Кабельные линии электропередас (клеп)
- •Наружный покров защищает броню от коррозии. Представляет собой джутовое покрытие, пропитанное битумной массой.
- •Лекция № 4 Схемы замещения и параметры элементов электрических сетей
- •Активное сопротивление
- •Индуктивное сопротивление
- •Активная проводимость
- •Лекция № 5 Параметры схемы замещения трансформаторов
- •Общие сведения
- •Двухобмоточный трансформатор
- •Трехобмоточный трансформатор
- •Двухобмоточный трансформатор с расщепленной обмоткой низкого напряжения
- •Автотрансформатор
- •Графики нагрузки электроприемников
- •Значения Tmaxдля различных потребителей приводится в справочной литературе.
- •Потери мощности в элементах сети
- •Расчет потерь мощности в линиях электропередач
- •Расчет потерь мощности в леп с равномерно распределенной нагрузкой
- •Расчет потерь мощности в трансформаторах
- •Приведенные и расчетные нагрузки потребителей
- •Расчет потерь электроэнергии
- •Мероприятия по снижению потерь мощности
- •Векторная диаграмма лэп 35 кВ с одной нагрузкой
- •Напряжение в начале лэп определяется как
- •Векторная диаграмма лэп 35 кВ с несколькими нагрузками
- •Векторная диаграмма лэп 110 кВ с одной нагрузкой
- •Задача расчета режимов. Основные допущения
- •Метод расчета режима при заданном напряжении в конце лэп
- •Расчет режима при заданном напряжении в начале лэп (на источнике питания)
- •Расчет сетей разных номинальных напряжений
- •Допустимые потери напряжения в линиях местных сетей
- •Допущения, положенные в основу расчета местных сетей
- •Определение наибольшей потери напряжения
- •В неразветвленной сети наибольшая потеря напряжения – это потеря напряжения от ип до конечной точки сети.
- •Частные случаи расчета местных сетей
- •Потеря напряжения в лэп с равномерно распределенной нагрузкой
- •Общие положения методов
- •Расчет сечений проводов из условия постоянства сечений на участках
- •Расчет сечений проводов из условия минимального расхода проводникового материала
- •Расчет сечений проводов из условия минимума потерь мощности в сети
- •Этапы расчета при разных условиях
- •Сравнительная характеристика методов
- •Расчет линий с двухстронним питанием
- •Частные случаи расчета простых замкнутых сетей
- •Суть метода преобразования
- •Прием 1. Замена площади сечения проводов участка сети эквивалентной
- •Из полученного равенства можно найти значения мощностей :
- •Прием 5. Перенос нагрузок в другие точки сети
- •Реактивная мощность в энергосистеме. Потребители реактивной Мощности. Выработка реактивной мощности генераторами эс
- •Общие положения
- •Регулирующий эффект нагрузки
- •Потребители реактивной мощности
- •Генерация реактивной мощности генераторами эс
- •Реактивная мощность в энергосистеме. Компенсация реактивной мощности.
- •Общие положения
- •Синхронные компенсаторы
- •Величина эдс Eq определяется величиной тока возбуждения. Росту тока возбуждения соответсвует увеличение эдс Eq.
- •Батареи конденсаторов
- •Продольная компенсация
- •Статические источники реактивной мощности
- •Общие положения
- •Регулирование напряжения в центрах питания
- •Метод встречного регулирования
- •Регулирование напряжения на электростанциях
- •Регулирование напряжения на понижающих подстанциях
- •Устройство рпн двухобмоточного трансформатора
- •Устройство рпн автотрансформатора
- •Выбор ответвлений двухобмоточного трансформатора
- •Регулирование напряжения при помощи линейных регуляторов
- •Регулирование напряжения при помощи устройств продольной компенсации
- •Регулирование напряжения при помощи устройств поперечной компенсации
- •Общие сведения
- •Оптимальное распределение активной мощности между тепловыми электростанциями
- •Оптимальное распределение мощности в замкнутых сетях
- •Экономичный режим работы трансформаторов
- •Если мощность нагрузки в минимальном режиме меньше экономической (), то один из включенных трансформаторов следует отключить. При этом суммарные потери в трансформаторах уменьшаются.
Значения Tmaxдля различных потребителей приводится в справочной литературе.
Лекция № 7
Потери мощности и электроэнергии в элементах сети
План.
Потери мощности в элементах сети.
Расчет потерь мощности в линиях электропередач.
Расчет потерь мощности в ЛЕП с равномерно распределенной нагрузкой.
Расчет потерь мощности в трансформаторах.
Приведенные и расчетные нагрузки потребителей.
Расчет потерь электроэнергии.
Мероприятия по снижению потерь мощности.
Потери мощности в элементах сети
Для количественной характеристики работы элементов электрической сети рассматриваются ее рабочие режимы. Рабочий режим – это установившееся электрическое состояние, которое характеризуется значениями токов, напряжений, активной, реактивной и полной мощностей.
Основной целью расчета режимов является определение этих параметров, как для проверки допустимости режимов, так и для обеспечения экономичности работы элементов сетей.
Определение значений токов в элементах сети и напряжений в ее узлах начинается с построения картины распределения полной мощности по элементу, т.е. с определения мощностей в начале и конце каждого элемента. Такую картину называют потокораспределением.
Рассчитывая мощности в начале и в конце элемента электрической сети, учитывают потери мощности в сопротивлениях элемента и влияние его проводимостей.
Расчет потерь мощности в линиях электропередач
Потери активной мощности на участке ЛЕП (см. рис. 7.1) обусловлены активным сопротивлением проводов и кабелей, а также несовершенством их изоляции. Мощность, теряемая в активных сопротивлениях трехфазной ЛЕП и расходуемая на ее нагрев, определяется по формуле:

![]()
![]()
,
где
полный,
активный и реактивный токи в ЛЕП;
P, Q, S – активная, реактивная и полная мощности в начале или конце ЛЕП;
U– линейное напряжение в начале или конце ЛЕП;
R – активное сопротивление одной фазы ЛЕП.
Потери активной мощности в проводимостях ЛЕП обусловлены несовершенством изоляции. В воздушных ЛЕП – появлением короны и, в очень незначительной степени, утечкой тока по изоляторам. В кабельных ЛЕП – появлением тока проводимости а его абсорбции. Рассчитываются потери по формуле:
,
где U– линейное напряжение в начале или конце ЛЕП;
G – активная проводимость ЛЕП.
При проектировании воздушных ЛЕП потери мощности на корону стремятся свести к нулю, выбирая такой диаметр провода, когда возможность возникновения короны практически отсутствует.
Потери реактивной мощности на участке ЛЕП обусловлены индуктивными сопротивлениями проводов и кабелей. Реактивная мощность, теряемая в трехфазной ЛЕП, рассчитывается аналогично мощности, теряемой в активных сопротивлениях:
![]()
Генерируемая емкостной проводимостью зарядная мощность ЛЕП рассчитывается по формуле:
,
где U– линейное напряжение в начале или конце ЛЕП;
B – реактивная проводимость ЛЕП.
Зарядная мощность уменьшает реактивную нагрузку сети и тем самым снижает потери мощности в ней.
Расчет потерь мощности в леп с равномерно распределенной нагрузкой
В
линиях местных сетей (
)
потребители одинаковой мощности могут
располагаться на одинаковом расстоянии
друг от друга (например, источники
света). Такие ЛЕП называются линиями с
равномерно распределенной нагрузкой
(см. рис. 7.2).
В равномерно нагруженной линии трехфазного переменного тока длиной L с суммарной токовой нагрузкойIплотность тока на единицу длины составитI/L. При погонном активном сопротивленииr0 потери активной мощности составят:


Если бы нагрузка была сосредоточена в конце, то потери мощности определялись бы как:
.
Сравнивая приведенные выражения, видим, что потери мощности в линии с равномерно распределенной нагрузкой в 3 раза меньше.
