- •Министерство образования и науки
- •Свойства электроэнергии
- •Цель и задачи курса
- •Электрическая сеть, как часть электрической системы
- •Номинальные напряжения
- •Область использования номинальных напряжений
- •Воздушные линии электропередас (влеп)
- •Кабельные линии электропередас (клеп)
- •Наружный покров защищает броню от коррозии. Представляет собой джутовое покрытие, пропитанное битумной массой.
- •Лекция № 4 Схемы замещения и параметры элементов электрических сетей
- •Активное сопротивление
- •Индуктивное сопротивление
- •Активная проводимость
- •Лекция № 5 Параметры схемы замещения трансформаторов
- •Общие сведения
- •Двухобмоточный трансформатор
- •Трехобмоточный трансформатор
- •Двухобмоточный трансформатор с расщепленной обмоткой низкого напряжения
- •Автотрансформатор
- •Графики нагрузки электроприемников
- •Значения Tmaxдля различных потребителей приводится в справочной литературе.
- •Потери мощности в элементах сети
- •Расчет потерь мощности в линиях электропередач
- •Расчет потерь мощности в леп с равномерно распределенной нагрузкой
- •Расчет потерь мощности в трансформаторах
- •Приведенные и расчетные нагрузки потребителей
- •Расчет потерь электроэнергии
- •Мероприятия по снижению потерь мощности
- •Векторная диаграмма лэп 35 кВ с одной нагрузкой
- •Напряжение в начале лэп определяется как
- •Векторная диаграмма лэп 35 кВ с несколькими нагрузками
- •Векторная диаграмма лэп 110 кВ с одной нагрузкой
- •Задача расчета режимов. Основные допущения
- •Метод расчета режима при заданном напряжении в конце лэп
- •Расчет режима при заданном напряжении в начале лэп (на источнике питания)
- •Расчет сетей разных номинальных напряжений
- •Допустимые потери напряжения в линиях местных сетей
- •Допущения, положенные в основу расчета местных сетей
- •Определение наибольшей потери напряжения
- •В неразветвленной сети наибольшая потеря напряжения – это потеря напряжения от ип до конечной точки сети.
- •Частные случаи расчета местных сетей
- •Потеря напряжения в лэп с равномерно распределенной нагрузкой
- •Общие положения методов
- •Расчет сечений проводов из условия постоянства сечений на участках
- •Расчет сечений проводов из условия минимального расхода проводникового материала
- •Расчет сечений проводов из условия минимума потерь мощности в сети
- •Этапы расчета при разных условиях
- •Сравнительная характеристика методов
- •Расчет линий с двухстронним питанием
- •Частные случаи расчета простых замкнутых сетей
- •Суть метода преобразования
- •Прием 1. Замена площади сечения проводов участка сети эквивалентной
- •Из полученного равенства можно найти значения мощностей :
- •Прием 5. Перенос нагрузок в другие точки сети
- •Реактивная мощность в энергосистеме. Потребители реактивной Мощности. Выработка реактивной мощности генераторами эс
- •Общие положения
- •Регулирующий эффект нагрузки
- •Потребители реактивной мощности
- •Генерация реактивной мощности генераторами эс
- •Реактивная мощность в энергосистеме. Компенсация реактивной мощности.
- •Общие положения
- •Синхронные компенсаторы
- •Величина эдс Eq определяется величиной тока возбуждения. Росту тока возбуждения соответсвует увеличение эдс Eq.
- •Батареи конденсаторов
- •Продольная компенсация
- •Статические источники реактивной мощности
- •Общие положения
- •Регулирование напряжения в центрах питания
- •Метод встречного регулирования
- •Регулирование напряжения на электростанциях
- •Регулирование напряжения на понижающих подстанциях
- •Устройство рпн двухобмоточного трансформатора
- •Устройство рпн автотрансформатора
- •Выбор ответвлений двухобмоточного трансформатора
- •Регулирование напряжения при помощи линейных регуляторов
- •Регулирование напряжения при помощи устройств продольной компенсации
- •Регулирование напряжения при помощи устройств поперечной компенсации
- •Общие сведения
- •Оптимальное распределение активной мощности между тепловыми электростанциями
- •Оптимальное распределение мощности в замкнутых сетях
- •Экономичный режим работы трансформаторов
- •Если мощность нагрузки в минимальном режиме меньше экономической (), то один из включенных трансформаторов следует отключить. При этом суммарные потери в трансформаторах уменьшаются.
Реактивная мощность в энергосистеме. Потребители реактивной Мощности. Выработка реактивной мощности генераторами эс
План.
Общие положения.
Регулирующий эффект нагрузки.
Потребители реактивной мощности.
Генерация реактивной мощности генераторами ЭС.
Общие положения
Из баланса реактивной мощности в энергосистеме следует, что в случае, когда генерация реактивной мощности превышает ее потребление, напряжение в сети возрастает. При дефиците реактивной мощности – напряжение уменьшается. Этот вывод мы уже получали, когда рассматривали векторную диаграмму линии электропередачи напряжением 110 кВ. Емкостный ток ЛЭП, работающей на холостом ходу, или, другими словами, мощность, генерируемая ЛЭП, повышает напряжение в конце ЛЭП.
В отличие от баланса активной мощности, баланс реактивной мощности не может в полной мере определить требования, которые предъявляются к источникам реактивной мощности. Если активную мощность вырабатывают только генераторы электростанций, то реактивную мощность можно получить от дополнительных источников, которые могут устанавливаться вблизи потребителей. Эти дополнительные источники называются компенсирующими установками.
При проектировании электрической сети нужно проверять баланс реактивной мощности как в целом по энергосистеме, так и в отдельных ее частях. При этом следует учитывать и необходимость резерва реактивной мощности.
Баланс реактивной мощности следует предусматривать отдельно для каждого режима сети. Характерными режимами в системе являются:
режим наибольшей реактивной нагрузки. Для режима характерно наибольшее потребление реактивной мощности и наибольшая мощность компенсирующих устройств;
режим наибольшей активной нагрузки. Режим связан с наибольшей загрузкой генераторов активной мощности при наименьшей выработке реактивной мощности;
режим наименьшей активной нагрузки. В этом режиме часть генераторов отключают. Выработка реактивной мощности генераторами электро-станций уменьшается;
послеаварийные и ремонтные режимы. В этих режимах наибольшие ограничения по передаче реактивной мощности.
Если в энергосистеме наблюдается дефицит активной мощности, то он покрывется за счет избытка активной мощности в других системах. Для покрытия недостатка реактивной мощности ее экономичнее генерировать компенсирую-щими устройствами, которые устанавливаются в данной энергосистеме, а не передавать из соседних систем.
Регулирующий эффект нагрузки
Изменение активной и реактивной от напряжения происходит по статическим характеристикам (рис. 16.1). Рассмотрим, каким образом реагирует нагрузка на изменение режима в простейшей системе (рис. 16.2).
В
нормальном режиме работы на шинах
нагрузки поддерживается номинальное
напряжение. Потребитель берет из сети
мощность равнуюP2
+ j Q2.
При постоянном напряжении в начале ЛЭП, напряжение на ее конце может быть рассчитано сле-дующим образом:
![]()
![]()
П
редположим,
что напряжение в конце ЛЭП уменьшается.
В соответствии со статическими
характеристиками, активная и реактивная
мощности потребителя, будут уменьшаться.
Следовательно,
будут уменьшаться мощность в конце ЛЭП
и потеря напряжения
,
а напряжение в конце ЛЭП
будет увеличиваться.
Этот вывод справедлив, когда напряжение в конце ЛЭП будет больше критического напряжения:
.
Критическое напряжение составляет (0,7 – 0,8) от Uном.
Таким образом, при напряжениях больших чем критическое, нагрузка, изменяя свою мощность, стремится поддержать неизменным напряжение на своих шинах. В этом случае говорят о положительном регулирующем эффекте нагрузки.
При
напряжениях меньших чем критическое
проявляется отрицательный регулирующий
эффект нагрузки. Активная мощность
потребителя в соответствии со статическими
характеристиками уменьшается. Потребление
реактивной мощности начинает возрастать.
Причем, значение реактивной мощности
увеличивается в большей степени, чем
снижение активной. Следовательно,
активная мощность в конце ЛЭП уменьшается
,
реактивная мощность увеличивается
.
Потеря напряжения на участке увеличивается
,
а напряжение на шинах нагрузки снижается
Это приводит к увеличению потребления
реактивной мощности и дальнейшему
снижению напряжения
и т.д. Возникает явление, которое
называется лавиной напряжения. При
такой аварии тормозятся асинхронные
двигатели. Реактивная мощность асинхронных
двигателей растет, баланс реактивной
мощности нарушается, причем потребление
реактивной мощности в значительной
мере превышает выработку:
.
Это в свою очередь приводит к понижению напряжения. Остановить снижение напряжения при этой аварии можно, лишь отключив нагрузку.
Чтобы напряжение не снижалось ниже критического на генераторах и мощных синхронных двигателях устанавливаются автоматические регуляторы возбуждения (АРВ). Под их действием генераторы и синхронные двигатели увеличивают выработку реактивной мощности.
