
- •1.Основные понятия химии: атом, молекула, атомная и молекулярная массы, простое и сложное вещество, химический эквивалент. Моль.
- •2. Основные законы химии.
- •3. Основные классы неорганических веществ: кислоты, соли, основания, оксиды.
- •4. Периодический закон и периодическая система элементов д.И.Менделеева, ее структура.
- •5. Основные этапы развития представлений о строении атома и ядра. Квантово-механическая модель атома.
- •6. Понятие об электронном облаке. Волновая функция.
- •7. Квантовые числа.
- •Валентность как правило определяется s и p электронами (…..)
- •9.Емкость энергетических уровней и подуровней. Строение электронных оболочек атомов и связь периодической системы со строением атомов.
- •10. Энергия ионизации, энергия сродства к электрону, электроотрицательность. Ионизационный потенциал.
- •11.Природа химической связи. Теория валентности. Понятие о степени окисления.
- •14.Донорно-акцепторный механизм образования ковалентной связи.
- •16.Металлическая связь.
- •17. Водородная связь. Механизм образования водородной связи.
- •19.Валентные возможности атомов элементов различных групп и периодов
- •20. Растворы, определение, классификация. Понятие о концентрации растворов, способы ее выражения
- •21. Теория электролитической диссоциации. Степень и константа электролитической диссоциации. Закон разведения Оствальда.
- •22.Сильные и слабые электролиты. Активность. Ионная сила растворов.
- •Слабые электролиты
- •23. Свойства воды. Вода. Водородный показатель среды.
- •24. Активность, коэффициент активности. Ионная сила растворов. Связь между коэффициентом активности и ионной силой раствора
- •25 Гидролиз солей. Константа и степень гидролиза. Факторы смещения равновесия гидролиза. Необратимый гидродиз.
- •26 Скорость химической реакции. Влияние температуры на скорость химической реакции. Правило Вант-Гоффа. Уравнение Аррениуса. Порядок и молекулярность реакций. Энергия активации, ее физический смысл.
- •Правило Вант-Гоффа
- •27.Влияние концентрации реагентов на скорость химической реакции. Закон действующих масс. Константа скорости химической реакции и ее физический смысл.
- •28 Катализ. Гомогенный, гетерогенный, ферментативный. Особенности отдельных типов катализа. Примеры.
- •Катализ - изменение скорости реакции под действием особых веществ (катализаторов)
- •Все вещества в одной Катализатор находится в
- •29 Обратимость химических реакций. Влияние концентрации, давления и температуры на химическое равновесие. Принцип Ле-Шателье. Константа химического равновесия
- •30.Определение и классификация электрохимических процессов. Понятие об электродном потенциале. Стандартный электродный потенциал. Уравнение Нернста для расчета потенциала металлического электрода.
- •32. Газовые электроды. Расчет потенциалов водородного и кислородного электродов.
- •35.Электролиз. Законы Фарадея. Электролиз с растворимым и нерастворимым анодом (в расплаве и в растворе). Выход по току. Практическое применение.
- •36. Коррозия. Основные виды коррозии: химическая, электрохимическая, коррозия под действием блуждающих токов. Методы защиты от коррозии. Ингибиторы коррозии.
- •37. Термодинамика и кинетика коррозии.
14.Донорно-акцепторный механизм образования ковалентной связи.
Донорно-акцепторный механизм - образование связи за счет пары электронов одного атома и свободной орбитали другого атома. Возникает между атомами, которые уже входят в состав каких – то молекул и приводит к соединению более простых молекул в сложные комплексы. Донорами выступают атомы неметаллов с отрицательными степенями окисления и имеющих одну или несколько не поделенных электронных пар (F-, Cl-, O2-). Акцепторами служат атомы в состоянии положительных степеней окисления и имеющие свободные орбитали.
15. Ионная связь. Степень ионности. Донорно-акцепторный механизм образования ковалентной связи. Металлическая связь.
Ионной связь – химическая связь осуществляемая за счет электростатического притяжения положительных и отрицательных ионов. Образуется в том случае, когда взаимодействуют атомы противоположные по свойствам (активные металлы 1-2 групп с активными неметаллами 4 и 7 групп). Атомы металла отдают внешние электроны и превращаются в положительные ионы, а неметаллы принимают и превращаются в отрицательные ионы. Далее образованные ионы взаимодействуют друг с другом под действием электростатического напряжения (раствор или расплав соли). В твердом виде наблюдается смещение электронной плотности от атома металла к атому неметалла. Атом металла может потерять до 90%электроноой плотности. Соединения образованные путем притяжения называются ионными. Донорно-акцепторный механизм - образование связи за счет пары электронов одного атома и свободной орбитали другого атома. Возникает между атомами, которые уже входят в состав каких – то молекул и приводит к соединению более простых молекул в сложные комплексы. Донорами выступают атомы неметаллов с отрицательными степенями окисления и имеющих одну или несколько не поделенных электронных пар (F-, Cl-, O2-). Акцепторами служат атомы в состоянии положительных степеней окисления и имеющие свободные орбитали.
ИОННАЯ СВЯЗЬ, один из видов химической связи, в основе которой лежит электростатическое взаимодействие между противоположно заряженными ионами. Наиболее ярко выражена в галогенидах щелочных металлов, напр., в NaCl, KF
16.Металлическая связь.
Металлическая связь – осуществляется за счет обобществленных свободных электронов взаимодействующих с совокупностью положительных ионов. Образуется у металлов. Все металлы имеют кристаллическую решетку. При образовании связи объединяются электроны всех атомов кристалла. Относится к высокоэнергетическим связям, не обладает насыщаемостью и направленности в пространстве. У большинства металлов на внешней электронной оболочке имеются значительное число вакантных орбиталей и малое число электронов. Поэтому энергетически более выгодно, чтобы электроны не были локализованы, а принадлежали всему металлу. Валентные электроны у металлов не локализованы. Между «+» заряженными ионами металла и нелокализованными электронами существует электростатическое взаимодействие, обеспечивающее устойчивость вещества.
17. Водородная связь. Механизм образования водородной связи.
ВОДОРОДНАЯ СВЯЗЬ, вид химической связи типа А — Н...А'; образуется в результате взаимодействия атома водорода, связанного ковалентной связью с электроотрицательным атомом А (N, O, S и др.), и неподеленной парой электронов другого атома А' (обычно O, N). Атомы А и А' могут принадлежать как одной, так и разным молекулам. Водородная связь приводит к ассоциации одинаковых или различных молекул в комплексы; во многом определяет свойства воды и льда, молекулярных кристаллов, структуру и свойства многих синтетических полиамидов, белков, нуклеиновых кислот и др
18. Окислительно-восстановительные реакции. Электронная теория окислительно-восстановительных реакций. Положение элементов окислителей и восстановителей в периодической системе. Важнейшие окислители и восстановители. Степень окисления.
Окислительно-восстановительные реакции – такие реакции которые протекают с изменением степеней окисления элементов, входящих в состав соединений. К ним относятся а) реакции замещения Zn+H2SO4=ZnSО4+H2, б) реакции разложения и соединения 2KclO3=2KCl+3O2, H2+Cl2=2HCl, в)сложные реакции взаимодействия 2 и более веществ 4FeS2+11O2=2Fe2O3+8O2. выделяют три типа. 1. Реакции межмолекулярного окисления-восстановления. Окислитель и восстановитель находятся в составе различных веществ. 2. Реакции внутримолекулярного окисления-восстановления. Ион-окислитель и ион-восстановитель входят в состав одного вещества. 3. Реакции самоокисления-восстановления. Окислителем и восстановителем являются атомы одного и того же элемента – хлора в промежуточной степени окисления. Теория основана на следующих положениях а) реакции сопровождаются переходом электронов от элемента-восстановителя к элементу-окислителю; б)Окисление-восстановление – единый взаимосвязанный процесс; в) Окисление – процесс отдачи электронов, который сопровождается повышением степени окисления элемента-восстановителя;
г) Восстановление – процесс присоединения электронов, который сопровождается понижением степени окисления элемента-окислителя. Процессы окисления и восстановления выражают полуреакциями, в которых указывается изменение степени окисления восстановителя и окислителя. Правило количество электронов, отданных восстановителем в процессе окислительно-восстановительной реакции всегда = количеству электронов, принятых окислителем. Окислительно-восстановительные свойства зависят от положения элементов в периодической системе. Атомы металлов только отдают электроны т.е. являются восстановителями. Восстановительные свойства убывают в пределах периода слева на право. Возрастают в пределах подгрупп сверху вниз. Окислительные свойства возрастают в пределах главных подгрупп снизу вверх. Окислительные свойства элементов возрастают в пределах периода слева направо. Окислители. Неметаллы F2 Cl2 O2 I2 S, сложные вещ-ва с высшей степенью окисления, положительно заряженные ионы малоактивных металлов. Восстановители. Активные металлы (К, Na,Са), сложные вещества содержащие атомы неметаллов с отрицательной степенью окисления, сложные вещества содержащие элементы с переменной валентности, органические восстановители.