Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

РГР1 сельхоз

.docx
Скачиваний:
16
Добавлен:
19.02.2017
Размер:
47.81 Кб
Скачать

Некоммерческое акционерное общество

«АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ»

Кафедра «Электроснабжения промышленных предприятий»

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА №1

По дисциплине: Введение в специальность: Электрификация сельского хозяйства

На тему: Виды защит электрических сетей и потребителей электрической энергии в системах электроснабжения сельского хозяйства.

Специальность: Энергообеспечение сельского хозяйства

Выполнил: Қарсыбаев Жаханбек Группа: ЭСХк-15-03

Приняла: Рахимова Рауза Мадиевна

__________ «____» ______________2016г

Алматы 2016

Содержание

Введение...................................................................................................................3

1.Потребители электрической энергии и снабжение ......................................4-7 2.Виды защита электрических сетей……………………………………….8-11

Заключение.............................................................................................................12

Список использованной литературы...................................................................13

Введение

Способ защиты потребителей электроэнергии от импульсных перенапряжений, заключающийся в периодической коммутации во время действия импульсных перенапряжений цепи питания потребителей электроэнергии бесконтактным ключом и сглаживании импульсного напряжения с помощью фильтра, содержащего дроссель, включенный последовательно в цепь бесконтактного ключа, демпферный диод и конденсатор, включенный параллельно потребителю электроэнергии, причем упомянутую коммутацию осуществляют в соответствии со значением сигнала, пропорционального первой производной выходного напряжения по времени, отличающийся тем, что формируют сигнал, пропорциональный току дросселя, складывают его с сигналом, пропорциональным первой производной по времени выходного напряжения, выключают бесконтактный ключ в моменты достижения суммарным сигналом максимального значения, а включают - в моменты достижения минимального значения.

Особенности функционирования сельскохозяйственной отрасли накладывает отпечатки на потребления и распределения энергии, а также возможные энергетические источники.

Общая структура теплоэнергетических ресурсов для сельского хозяйства помимо традиционных источников энергии – нефти, газа, электроэнергии; включает также солнечную энергию, энергию биологической массы, вторичные энергоресурсы и т.д. Функционирование сельского хозяйства в России происходит в сложных климатических условиях, чем в других странах. Из этого следует, что более 30-40% энергетических ресурсов, потребляемых в сельском хозяйстве, тратится на обогрев помещений.

При плановой модели хозяйствования была устойчивая тенденция к повышению энергоемкости сельскохозяйственного производства. Проблема энергосбережения в сельском хозяйстве включает последовательное решение следующих задач:

  • принятие и постепенная реализация организационно-экономических и нормативно-правовых мероприятий;

  • внедрение энергосберегающих технологий с широким использованием вторичных энергоресурсов;

  • изменение машинных технологий с кардинальным снижением энергетических затрат.

К примеру:

В животноводстве замена зерновых кормов травяными, на производство которых затрачивается меньше энергии, ведет к значительной экономии энергетических ресурсов. Системы содержания и кормления, животных с организацией многолетних культурных пастбищ и загонной пастьбы животных ведет к снижению энергоемкости животноводческой продукции в 2-3 раза в сравнении со стойловым содержанием животных.

В растениеводстве происходит переоценка применяемых технологий возделывания культур с целью существенного сокращения энергетических затрат. Для того чтобы снизить энергетические затраты, при основной обработке почвы применяются ресурсосберегающие приемы обработки почвы.

Особенности функционирования сельскохозяйственной отрасли накладывает отпечатки на потребления и распределения энергии, а также возможные энергетические источники.

Защита электрической сети

        система мероприятий, предотвращающих и ограничивающих развитие аварии на линиях электропередачи и электрических подстанциях. Имеет целью обеспечить надёжность снабжения потребителей электрической энергией должного качества. Подавляющее количество электроэнергии распределяется через электрической сети общего пользования. Защита таких сетей имеет важное значение для нормального электроснабжения промышленности, сельского хозяйства, ж.-д. транспорта и др. потребителей и непрерывно совершенствуется. В той или иной мере защищают все электроустановки, в том числе и автономные источники электрической энергии с их малыми сетями.

         Электрическую сеть общего пользования необходимо защищать от перегрузки, перенапряжений и от коротких замыканий, опасных для сети, от повреждения изоляционных и поддерживающих конструкций и обрывов проводов. Опасные явления возникают как вследствие атмосферных воздействий (например, удара молнии), так и в результате изменения состояния самой сети, например пробоя изоляции или преднамеренного отключения ненагруженной линии передачи. Повреждение изоляции может быть вызвано старением материала или внешними причинами. Поддерживающие конструкции (опоры, траверсы, арматура изоляторов и т.п.) ломаются под действием ветра, от гололёда, подвергаются коррозии. Возможны случаи пережога проводов током и обрыва их, например от вибрации. Причинами аварии могут быть неправильное действие автоматических устройств в сети и ошибки обслуживающего персонала. При огромных масштабах современных электрических сетей, состоящих из десятков тысяч км линий электропередачи разных напряжений, тысяч электрических подстанций, практически невозможно избежать опасных ситуаций. Если авария всё же возникает, то свести к минимуму её вредные последствия должна З. э. с. Для этого необходимо как можно быстрее отключить поврежденный элемент (участок) сети, не затрагивая при этом соседние участки, а потребителей перевести на питание от резервных источников. Однако по экономическим соображениям бесперебойное электроснабжение, достигаемое автоматическим включением резерва (См. Автоматическое включение резерва), гарантируется не всем потребителям.

         Защита от перегрузок в электрических сетях с напряжением до 1000 в осуществляется с помощью плавких предохранителей или автоматических выключателей. Они отключают защищаемый участок сети, когда ток превышает некоторое значение, допустимое по условиям нагрева проводов. Предохранители действуют без выдержки времени, в соответствии с защитной характеристикой плавкой вставки. Автоматические выключатели снабжаются расцепителями как мгновенного действия, так и с задержкой во времени, зависящей от превышения тока в линии сверх допустимого значения. В электрических сетях с напряжением свыше 1000 в от тепловой перегрузки защищают трансформаторы и отдельные подземные (кабельные) линии, которые работают в условиях систематических перегрузок. Воздушные линии в такой защите обычно не нуждаются.

         З. э. с. от повреждений изоляции. Изоляция воздушной линии электропередачи состоит из окружающего воздуха и фарфоровых или стеклянных изоляторов, на которых крепятся провода. Изоляция подземных линий, трансформаторов и различных аппаратов обычно выполняется из твёрдых и жидких диэлектриков (См. Диэлектрики), которые подвержены старению. В этих устройствах возможен пробой изоляции при рабочем напряжении; аналогичное явление может иметь место в изоляторах воздушной линии. Основное средство предотвращения аварий от повреждения изоляции — профилактика, т. е. периодический контроль за состоянием изоляции с целью выявления дефектов и своевременной замены или ремонта изоляционных конструкций. Контроль изоляции осуществляется посредством испытания её при повышенном напряжении, либо косвенными методами: по сопротивлению изоляции, по величине угла диэлектрических потерь, путём измерения распределения напряжения (по изоляторам гирлянды) и индикации частичных разрядов и др. Дефекты в изоляции развиваются постепенно, причина их во многих случаях связана с проникновением влаги. Профилактические испытания выявляют элементы изоляции с повышенной вероятностью повреждения, что даёт возможность своевременно устранить опасность аварии. Профилактика изоляции резко сокращает аварийность электрических установок. В приморских и степных (пустынных) районах, а также вблизи заводов на изоляторах оседают морская соль, песок, уносы из промышленных предприятий и т.п. В этих случаях устанавливают изоляторы специальной конструкции, с развитой наружной поверхностью, а также выполняют мокрую очистку изоляторов под напряжением.

         З. э. с. от замыкания на землю. В СССР сети общего пользования с напряжением до 0,38 кв, а также с напряжением 110 кв и выше эксплуатируются с глухо заземлённой нейтралью. Исключения делаются для районов вечной мерзлоты, где трудно установить заземляющие устройства. В сетях с напряжением от 3 до 35 кв нейтраль изолирована от земли или соединяется с ней через дугогасящую катушку; в этом случае сеть называется компенсированной. Подобная практика в отношении режима нейтрали имеет место и в др. странах. При заземлённой нейтрали соединение хотя бы одной фазы с землёй приводит к короткому замыканию. Замыкание одной фазы на землю в сети с изолированной нейтралью не нарушает рабочий режим, поэтому немедленное отключение поврежденного участка не требуется. Однако напряжение двух др. фаз относительно земли в установившемся режиме увеличивается в √3 раз, что создаёт угрозу для изоляции и небезопасно для людей. Сети с изолированной нейтралью оборудуются устройствами сигнализации замыкания на землю, чтобы повреждение могло быть обнаружено и устранено за короткое время (не более 2 ч). По требованиям техники безопасности в необходимых случаях применяется автоматическое отключение поврежденного участка сети. Большинство замыканий на землю начинается с кратковременного пробоя изоляции вследствие перенапряжения и далее переходит в Дуговой разряд, поддерживаемый током короткого замыкания. В сети большой протяжённости распределённая ёмкость проводов относительно земли велика и сила тока на землю при изолированной нейтрали достигает десятков и сотен а. При таких токах дуга горит длительное время и, как правило, перебрасывается на соседние фазы под действием ветра, термодинамических и электродинамических эффектов. Замыкание одной фазы на землю переходит в двух- или трёхфазное короткое замыкание, которое должно быть немедленно отключено. Развитие аварии в сети при большой силе тока замыкания на землю предотвращается заземлением нейтрали через дугогасящую катушку (катушку Петерсена). Быстрое обнаружение повреждения и его устранение необходимы для компенсированной сети так же, как и для сети с изолированной нейтралью.

         З. э. с. от коротких замыканий занимает важнейшее место в системе защитных мероприятий. Короткие замыкания являются основным видом аварии в электрических сетях как по частоте возникновения, так и по масштабу вредных последствий. Защитные мероприятия развиваются в двух направлениях: возможно более быстрое отключение поврежденного участка сети и искусственное ограничение силы тока короткого замыкания. Сокращение времени действия тока короткого замыкания облегчает тепловой режим элементов сети и способствует поддержанию устойчивой параллельной работы станций. На линиях 500 кв, например, применяется Релейная защита, время срабатывания которой составляет 0,04 сек; при времени действия выключателя 0,06—0,08 сек полное время отключения около 0,1 сек. Селективность защиты обеспечивает рабочий режим возможно большей части неповрежденной сети и отключение поврежденного её участка. К числу мероприятий, ограничивающих силу тока короткого замыкания, относятся: применение блочных схем питания, секционирование сборных шин подстанций, последовательное включение реакторов, увеличение индуктивности рассеяния трансформаторов и т.п. Физический смысл этих мер состоит в увеличении индуктивного сопротивления электрической цепи короткого замыкания. Вследствие этого неизбежны затруднения с регулированием напряжения в нормальных режимах и увеличение потерь электроэнергии в сети. Это приводит к снижению в некоторых случаях надёжности электроснабжения. Искусственное ограничение силы тока короткого замыкания противоречит требованиям, которые предъявляются к схеме и параметрам электрической сети по условиям оптимизации рабочего режима. Противоречие может быть устранено, если уменьшить силу тока короткого замыкания с помощью последовательно включенных ограничителей, имеющих незначительное сопротивление в нормальном режиме и в несколько раз большее в аварийном, когда на ограничителе падает преобладающая часть фазного напряжения. Создание таких ограничителей силы тока короткого замыкания принципиально возможно.

         З. э. с. от перенапряжении включает защиту от атмосферных перенапряжений, возникающих при разряде молнии в токопроводящие части электрической установки или вблизи неё в землю (см. Грозозащита), и защиту от внутренних перенапряжений, вызываемых преднамеренными или случайными изменениями состояния сети, например вследствие срабатывания выключателя или электрического пробоя изоляции на каком-либо участке сети. Перенапряжение — временный избыток энергии электромагнитного поля на участке сети. З. э. с. сводится к тому, чтобы путём аккумулирования или рассеяния избыточной энергии обезопасить изоляционные конструкции от электрического пробоя. Атмосферные перенапряжения характеризуются сравнительно небольшой энергией порядка млн. дж, малой длительностью действия (от долей до нескольких десятков мксек) и большой амплитудой (млн. в). Внутренние перенапряжения длятся от сотых долей сек до нескольких сек и более. Их амплитуда может значительно превышать амплитуду рабочего напряжения, а энергия достигать десятков млн. дж (в электроустановках 500 кв). Амплитуда внутренних перенапряжений зависит от схемы электрической сети, параметров её элементов и питающих электростанций. В ряде случаев для защиты от внутренних перенапряжений могут быть использованы переключающие операции, изменяющие параметры сети.

         З. э. с. от механических повреждений. Подземные линии передачи защищают от электрохимической коррозии, вызываемой блуждающими токами, и в необходимых случаях от почвенной коррозии. Производство каких-либо земляных работ вблизи трассы подземной линии регламентируется специальными правилами. Воздушные линии электропередачи и открытые электрические подстанции проектируют с учётом ветровых нагрузок и воздействия гололёда, т. е. обледенения проводов с образованием корки льда толщиной 10—20 мм. Возможно и более интенсивное обледенение при сильном ветре; в таких случаях лёд на проводах плавят электрическим током. При слабом ветре, дующем с постоянной скоростью 0,5—5 м/сек в направлении, перпендикулярном линии, могут возникнуть периодические колебания проводов в вертикальной плоскости, т. н. вибрация проводов. Частота таких колебаний от единиц до десятков гц, амплитуда не превышает нескольких см. Вибрация вызывается совпадением частоты аэродинамических импульсов, действующих на провод, с собственной частотой его свободных колебаний. Следствием вибрации являются трещины и изломы жил провода, прежде всего у выхода их из зажима. Вибрация с большой амплитудой приводит к поломке деталей арматуры и повреждению изоляторов, в отдельных случаях — к повреждению сварных швов металлических опор. Защита от подобных вибраций осуществляется путём подвески на провод динамических гасителей вибрации в виде чугунных грузов, закрепляемых на тросе на расстоянии 0,5—2 м от зажима провода и противодействующих колебаниям провода. С помощью таких гасителей амплитуда вибрации уменьшается до безопасной величины около 1 мм. При скорости ветра от 6 до 20—30 м/сек и гололёде иногда наблюдаются колебания проводов с частотой 0,2—4 гц очень большой амплитуды, достигающей нескольких м (т. н. пляска проводов). Радикальная защита от «пляски» проводов не разработана (1971).

         Опоры и поддерживающие провод конструкции защищают от атмосферного воздействия, а также от агрессивной биосферы (грибков, бактерий, насекомых) с помощью пропитки деревянных частей или антикоррозионных покрытий металлических конструкций. Принимаются также специальные меры для защиты воздушных линий от пожаров на трассе, от падения деревьев, от снежных и каменных лавин, от весеннего ледохода (вблизи рек) и др. В частности, вдоль трассы линии устанавливается охранная зелёная зона шириной от 20 до 100 м в зависимости от значения рабочего напряжения

Способ заключается в периодической коммутации во время действия импульсных перенапряжений цепи питания потребителей электроэнергии бесконтактным ключом и сглаживании импульсного напряжения с помощью LC-фильтра. Коммутацию осуществляют в соответствии со значением сигнала, пропорционального первой производной выходного напряжения по времени. При этом формируют сигнал, пропорциональный току дросселя. Складывают его с сигналом, пропорциональным первой производной по времени выходного напряжения. Выключают бесконтактный ключ в моменты достижения суммарным сигналом максимального значения и включают - в моменты достижения минимального значения. Технический результат - повышение надежности. 1 ил.

 

Изобретение относится к области промышленной электроники и может быть использовано для защиты потребителей электроэнергии постоянного тока от воздействия импульсных перенапряжений, возникающих в питающей сети при коммутации ее нагрузок в эксплуатационных и аварийных режимах, наведенных грозовыми разрядами, а также для ограничения тока заряда сглаживающих и накопительных конденсаторов различного назначения, преимущественно в полупроводниковых источниках вторичного электропитания.

Известен способ защиты от импульсных перенапряжений [см., например: Глухов О.А. Оптимальная коммутация электрических цепей: Научное издание. - Йошкар-Ола: МарГТУ, 2000, с.60, рис.18,б], основанный на различии частотного спектрального состава токов, потребляемых из сети, в нормальных эксплуатационных режимах работы потребителя электроэнергии и при воздействии импульсов перенапряжений. Сущность способа заключается в увеличении падения напряжения на ограничительном дросселе при протекании переменной составляющей тока, обусловленной импульсом перенапряжения в питающей сети. Способ обеспечивает эффективную защиту потребителей электроэнергии от импульсов сравнительно небольшой амплитуды (до 100-200 В) либо малой длительности (до 100-200 мкс). Параметры дросселя должны выбираться такими, чтобы возникающая во время импульса перенапряжения ЭДС самоиндукции компенсировала напряжение uимп импульса в соответствии с выражением:

где W - число витков обмотки дросселя; S - сечение магнитопровода; В - магнитная индукция в магнитопроводе.

Амплитуда тока Iм дросселя, равного сумме токов потребителя электроэнергии и заряда конденсатора фильтра, не должна приводить к насыщению сердечника дросселя

где μэ - эквивалентная относительная магнитная проницаемость магнитопровода; μ0 - магнитная проницаемость вакуума; lср - длина средней магнитной силовой линии магнитопровода.

Эти условия приводят к необходимости увеличения габаритных размеров и веса дросселя. Как показывают расчеты, при номинальном токе 10 А, амплитуде экспоненциального импульса 500 В длительностью 4 мс на уровне 0,5 от амплитуды масса дросселя превышает 40 кг. В переходных режимах (при включении и выключении, скачкообразных изменениях тока потребителя электроэнергии) из-за возбуждения колебательного процесса создаются большие пульсации напряжения и собственные всплески перенапряжения.

Известен способ защиты от импульсных перенапряжений [см., например: Глухов О.А. Оптимальная коммутация электрических цепей: Научное издание. - Йошкар-Ола: МарГТУ, 2000, с.62, рис.20], основанный на формировании с помощью трансформатора, включенного последовательно с потребителем электроэнергии, напряжения, пропорционального импульсу перенапряжения и направленного встречно последнему. Повышение эффективности этого способа достигается за счет компенсации импульса перенапряжения трансформированным напряжением.

Недостатками этого способа также являются наличие колебательного процесса в переходных режимах и необходимость применения дросселя с еще большими массогабаритными показателями.

Известен также способ защиты от импульсных коммутационных перенапряжений [Глухов О.А. Оптимальная коммутация электрических цепей: Научное издание. - Йошкар-Ола: МарГТУ, 2000, с.61, рис.19]. Сущность способа заключается в накоплении с помощью конденсатора энергии в течение времени, предшествующего появлению импульса перенапряжения, отключении потребителя электроэнергии от питающей сети на время действия импульса и питании потребителя за счет накопленной энергии.

Однако этот способ практически неприменим при больших мощностях потребителей электроэнергии (единицы киловатт и более) из-за необходимости накопления большого количества энергии, определяемой допустимым разрядом конденсатора за время импульса, а также критичности к длительности фронта импульса из-за инерционности транзистора и блока управления в устройствах, реализующих способ. Для обеспечения надежности при включении питания требуются дополнительные меры, обеспечивающие плавный заряд конденсатора.

Наиболее близким к заявленному (прототипом) является способ защиты от импульсных перенапряжений [см., например, патент РФ на изобретение N2264015, опубл. 10.11.2005, бюл. N31], сущность которого заключается в периодической коммутации во время действия импульсов перенапряжения цепи питания потребителя бесконтактным ключом и сглаживании импульсного напряжения с помощью индуктивно-емкостного фильтра, причем бесконтактный ключ включают в момент достижения минимального значения суммой сигналов, пропорциональных интегралу напряжения на обмотке дросселя и первой производной по времени выходного напряжения, а выключают - в момент достижения указанной суммы максимального значения.

Недостатком этого способа является низкая надежность устройств, реализующих способ, при токовых перегрузках. В установившемся режиме (при неизменных значениях напряжений и токов) управляющие сигналы включают бесконтактный ключ независимо от тока потребителя электроэнергии. Это обусловлено отсутствием непосредственной зависимости упомянутых сигналов от тока. Наиболее опасным является режим короткого замыкания, в котором выходное напряжение и его производная равны нулю.

Рассмотрим пример реализации способа.

На чертеже приведена функциональная схема устройства, реализующего предложенный способ защиты потребителей электроэнергии от импульсных перенапряжений. Устройство содержит последовательно соединенные бесконтактный ключ 1 (S1), дроссель 2 (L1) и конденсатор 3 (С2) фильтра, а также демпферный диод 4 (VD1), шунт 5 (Rш), подключенный к нему дифференциальный усилитель 6, дифференцирующее устройство 7 (dU/dt), подключенное к конденсатору 3, сумматор 8, входы которого соединены с выходами дифференциального усилителя 6 и дифференцирующего устройства 7. Выход сумматора 7 через пороговый элемент 9 (например, триггер Шмитта) подключен к управляющему входу бесконтактного ключа 1. Потребитель 10 (Rн) электроэнергии подключен к выходу фильтра, т.е. параллельно конденсатору 3.

Сущность предложенного способа заключается в ограничении скорости нарастания выходного напряжения при воздействии на входе импульса перенапряжения путем периодической коммутации цепи питания потребителя 10 электроэнергии на достаточно высокой частоте с последующим сглаживанием импульсного напряжения LC-фильтром. Коэффициент заполнения сигнала управления коммутирующим бесконтактным ключом 1 регулируют в зависимости от скорости увеличения выходного напряжения (первой производной этого напряжении по времени) и тока дросселя 2 сглаживающего фильтра.

В соответствии с предложенным способом устройство работает следующим образом. В установившемся режиме работы (при постоянных значениях напряжения питания Uпит и тока потребителя 10 электроэнергии) сигнал на выходе дифференцирующего устройства 7 равен нулю. При токе потребителя 10 электроэнергии, имеющем допустимое значение, сигнал на выходе дифференциального усилителя 6, а следовательно, и сумматора 8 не превышает верхнего порога срабатывания порогового элемента 9, ключ 1 находится во включенном состоянии. К потребителю 10 электроэнергии приложено практически полное напряжение питания.

При поступлении на вход устройства импульса перенапряжения входное напряжение Uпит устройства резко увеличивается, конденсатор 3 начинает дополнительно заряжаться током через дроссель 2. Нарастание тока заряда конденсатора 3 приводит к увеличению падения напряжения на шунте 5 и сигнала на выходе дифференциального усилителя 6. Увеличение выходного напряжения приводит к появлению сигнала на выходе дифференцирующего устройства 7. Увеличивается сигнал и на выходе сумматора 8. В момент достижения суммарным сигналом верхнего порога порогового элемента 9 он срабатывает и выключает ключ 1, происходит отключение потребителя 10 электроэнергии от источника питания. Ток дросселя 2 начинает уменьшаться, что приводит к изменению полярности ЭДС самоиндукции дросселя 2 на противоположную. Открывается демпферный диод 4, пропуская через себя ток дросселя 2, равный сумме токов потребителя 10 электроэнергии и заряда конденсатора 3. Падение напряжения на шунте 5, а следовательно, и выходное напряжение дифференциального усилителя 6 начинают уменьшаться. Это приводит к уменьшению сигнала на выходе сумматора 8. В момент достижения этим сигналом значения нижнего порога переключения порогового элемента 9 последний включает ключ 1. К дросселю 2 вновь прикладывается входное напряжение Uпит, ток дросселя 2 опять увеличивается.

Описанный процесс периодически повторяется. Частота коммутации ключа 1 определяется скоростью изменения тока дросселя 2, зависящей от его индуктивности. Выходное напряжение увеличивается с почти постоянной скоростью, определяемой глубиной отрицательной обратной связи по первой производной выходного напряжения.

Соседние файлы в предмете Электрические сети и системы