- •Лекция 1. Состав и назначение систем автоматизированного электропривода. Уравнение движения электропривода
- •Лекция 2Типовые статические нагрузки электропривода. Статическая устойчивость. Электромеханические и механические характеристики двигателей постоянного тока независимого возбуждения
- •Электромеханические и механические характеристики двигателей постоянного тока независимого возбуждения (дпт нв)
- •Лекция 3Искусственные электромеханические и механические характеристики дпт нв. Режимы торможения дпт нв
- •A) рекуперативное торможение (с отдачей энергии в сеть)
- •Б) Электродинамическое торможение
- •C) торможение противовключением
- •Лекция 4 Электромеханические свойства дпт последовательного возбуждения
- •Лекция 5Электромеханические свойства ад в электроприводе
- •Лекция 6Режимы торможения асинхронных двигателей
- •Лекция 7 Регулирование координат электропривода. Регулирование дпт
- •С) колебательность
- •Лекция 8 Электропривод постоянного тока по схеме «тиристорный преобразователь – двигатель» (тп-д)
- •Лекция 9 Регулируемые электроприводы с ад
- •Лекция 10 Преобразователи частоты для управления асинхронными двигателями
- •Лекция 11 Замкнутые системы автоматизированного электропривода
- •Лекция 12 Переходные процессы в электроприводах. Общие сведения
- •Лекция 13 Переходные процессы в эп с учетом электромагнитной инерционности
- •Лекция 15Нагрев и охлаждение двигателей
Лекция 2Типовые статические нагрузки электропривода. Статическая устойчивость. Электромеханические и механические характеристики двигателей постоянного тока независимого возбуждения
Цель: изучить силы и моменты, действующие в электроприводе, статические характеристики ДПТ НВ
Механическая характеристика исполнительного механизма – зависимость Мс=f(ω).

Активнымисилами и моментами называются силы и моменты, создаваемые внешними по отношению к двигателю источниками механической энергии независимо от движения электропривода. Пример – момент, создаваемый весом опускаемого или поднимаемого груза (рисунок 1). Момент сопротивления при этом равен
,
и направлен вниз, независимо от направления вращения вала двигателя. Величина МС не зависит от скорости Рисунок 2.1 перемещения груза.
Реактивными силами и моментами называются силы и моменты сопротивления движению, возникающие как реакция на активный движущий момент, развиваемый двигателем. Реактивные силы и моменты зависят от скорости и подразделяются на силы и моменты сухого трения, вязкого трения и силы, и моменты вентиляторного типа.
Силы
и моменты сухого
трения (рисунок
2.2) неизменны по модулю, но скачком меняют
свой знак при изменении знака скорости:
.
Они характерны для станочных приводов
подачи, вентилей, дросселей и т.д. На
рисунке 2.3 изображен нагрузочный момент
вязкого трения,характеризующийся
линейной (или близкой к ней) зависимостью
величины от скорости - ![]()



Зависимость
нагрузочного момента от угловой скорости
вентилятора, центробежного насоса,
центрифуги имеет вид, показанный на
рисунке 2.4, называется вентиляторными
описывается формулой
,
где n = 1,5…2.5.

Механическая характеристика электродвигателя – зависимость М=f(ω). Из курса «Электрические машины» знаем, что механичекие характеристики ЭД (рисунок 5) могут быть абсолютно жесткими (1- синхронный ЭД), жесткими (3 – двигатель постоянного тока независимого возбуждения и 2 – асинхронный двигатель на рабочем участке) и мягкими (4 - двигатель постоянного тока последовательного возбуждения ). Абсолютной жесткостью характеристики называется отношение приращения момента к приращению скорости
.

Движение привода в установившемся режиме может быть устойчивым или неустойчивым.В первом случае при случайно возникшем отклонении ω от ωУСТ привод возвратится в точку установившегося режима. При неустойчивом движении любое, даже самое малое отклонение ω от ωУСТ, приводит к изменению состояния: привод не вернется в точку установившегося режима. В качестве примера рассмотрим работу асинхронного электропривода на механизм с моментом сопротивления МС. Пусть при работе в точке «а» по какой – либо причине ω < ωУСТ. Тогда в соответствии с механическими характеристиками М > МС возникает положительный динамический момент МДИН = М – МС > 0, которому соответствует положительное ускорение dω/dt > 0, и система возвращается в точку установившегося режима – движение устойчиво.
Если при работе в точке «а» ω < ωУСТ, М < МС, МДИН = М – МС < 0, ускорение dω/dt < 0 и система возвращается в точку установившегося режима – движение устойчиво.
Если при работе в точке «b» ω > ωУСТ, М > МС, МДИН = М – МС > 0, ускорение dω/dt > 0, скорость становится еще выше. Если при работе в точке «b» ω < ωУСТ, М < МС, МДИН = М – МС < 0, ускорение dω/dt < 0 и скорость становится еще ниже. Таким образом, работа системы в точке «b» статическинеустойчива.
