- •1. Основные уравнения четырехполюсников. Определение коэффициентов.
- •2. Уравнения нагруженного четырехполюсника в а-форме. Входные сопротивления. Коэффициент передачи по напряжению и току. Расчет коэффициентов.
- •3. Схемы соединения четырехполюсников. Обратные связи.
- •Каскадное соединение
- •Последовательное соединение
- •4. Схемы замещения четырехполюсников.
- •5. Вторичные (характеристические) параметры четырехполюсников согласованный режим четырехполюсника.
- •6. Несинусоидальные токи. Разложение в ряд Фурье. Частотный спектр несинусоидальной функции напряжения или тока.
- •7. Максимальное, среднее и действующее значения несинусоидального тока.
- •8. Резонанс в цепи несинусоидального тока.
- •9. Мощность цепи несинусоидального тока.
- •10. Высшие гармоники в трехфазных цепях. Простейший утроитель частоты.
- •11. Возникновение переходных процессов в линейных цепях. Законы коммутации.
- •12. Классический метод расчета переходных процессов. Формирование расчетного уравнения, степень расчетного уравнения. Граничные условия.
- •Классический метод расчёта переходных процессов
- •13. Свободный и принужденный режимы. Постоянная времени цепи, определение длительности переходного процесса.
- •14. Периодический заряд конденсатора. Собственная частота колебаний контура. Критическое сопротивление.
- •15. "Некорректные" начальные условия. Особенности расчета. Существуют ли в реальных схемах такие условия?
- •16. 0Пределение корней характеристического уравнения. Обосновать.
- •17.Включение пассивного двухполюсника под действие кусочно-непрерывного напряжения. Формула Дюамеля.
- •Последовательность расчета с использованием интеграла Дюамеля
- •18. Реакция линейных цепей на единичные функции. Переходная и импульсная характеристики цепи, их связь.
- •Переходная и импульсная характеристики
- •19. Применение преобразований Лапласа к расчету переходных процессов. Основные свойства Лапласовых функций.
- •20.Операторные схемы замещения. Обосновать.
- •21.Расчет переходных процессов методом переменных состояния. Формирование расчетных уравнений. Расчет с помощью эвм.
- •22.Преобразование Фурье и его основные свойства. Частотные спектры импульсных сигналов, отличия от частотных спектров периодических несинусоидальных сигналов.
- •23.Расчет частотных характеристик цепи. Определение переходной характеристики по вещественной частотной.
- •24. Особенности применения частотного метода расчета при изучении прохождения сигнала через четырехполюсник.
- •25.Уравнения длинной линии в частных производных. Первичные параметры длинной линии.
- •26. Решение уравнений длинной линии при синусоидальном напряжении. Вторичные параметры длинной линии.
- •27. Волновые процессы в длинной линии. Падающая и отраженная волны. Коэффициент отражения. Входное сопротивление.
- •Дифференциальные уравнения длинной линии
- •Погонные параметры
- •Коэффициенты бегущей и стоячей волны
- •28.Линия без потерь. Стоячие волны.
- •29. Входные сопротивления линии без потерь. Имитация индуктивностей и емкостей.
- •30. Четвертьволновый трансформатор. Согласование линии с нагрузкой. Рассмотрите пример активно-реактивной нагрузки.
- •31. Волновые процессы в линии без потерь, нагруженной на активное сопротивление. Коэффициенты стоячей и бегущей волны.
- •32. Особенности вольт-амперных характеристик нелинейных элементов. Линейные схемы замещения по статическим и дифференциальным параметрам.
- •33. Расчет схем стабилизации напряжений и токов, определение коэффициента стабилизации по линейной схеме замещения.
- •34. Аппроксимация нелинейных характеристик. Аналитический метод расчета.
- •35. Особенности периодических процессов в электрических цепях с инерционными элементами.
- •36. Спектральный состав тока в цепи с нелинейным резистором при воздействии синусоидального напряжения. Комбинационные колебания.
- •37. Метод эквивалентных синусоид. Методы расчета нелинейных цепей по действующим значениям. Метод эквивалентной синусоиды.
- •Метод расчета нелинейных цепей переменного тока по эквивалентным действующим значениям
- •38. Форма кривых тока, магнитного потока и напряжения в нелинейной идеальной катушке. Схема замещения, векторная диаграмма.
- •Расчет тока катушки со сталью с учетом потерь в сердечнике
- •40. Феррорезонанс напряжений. Триггерный эффект.
- •41. Феррорезонанс токов. Скачкообразное изменение напряжения при питании от источника тока.
- •42. Основы метода гармонического баланса. Приведите пример.
- •43. Метод кусочно-линейной аппроксимации характеристик нелинейных элементов. Расчет цепей с вентилями. Схема однополупериодного и двухполупериодного выпрямителя.
- •Цепи с вентильными сопротивлениями
- •44. Расчет схемы однополупериодного выпрямителя с емкостью.
7. Максимальное, среднее и действующее значения несинусоидального тока.
Под максимальными значениями несинусоидальных ЭДС, токов или напряжений подразумевается их наибольшее мгновенное значение.
Под действующими значениями несинусоидальных ЭДС, токов и напряжений, как и для синусоидального тока, понимается их среднеквадратичное значение за период. Так, действующее значение несинусоидального тока:
где
После интегрирования получаем:
где I1, I2, Ik — действующие значения токов первой, второй, k-й гармоник, т.е.
; ;
Следовательно, действующее значение несинусоидального тока практически определяется как корень квадратный из суммы квадратов постоянной составляющей и действующих значений всех последующих гармоник. Аналогично действующие значения ЭДС и напряжений.
Действующие значения несинусоидальных напряжений и токов измеряются приборами электродинамической, электромагнитной и электростатической систем.
Существуют следующие понятия средних значений несинусоидальных токов, ЭДС и напряжений.
Среднее значение несинусоидального тока за период, которое равно его постоянной составляющей:
Среднее значение по модулю несинусоидального тока за период:
Таким же образом может быть осуществлена запись средних значений несинусоидальных ЭДС, напряжений.
Средние значения несинусоидальных напряжений и токов измеряются магнитоэлектрическими приборами без выпрямителя, средние значения по модулю — магнитоэлектрическими приборами, с выпрямителем.
8. Резонанс в цепи несинусоидального тока.
При резистивной нагрузке токи всех гармоник совпадают по фазе с соответствующими гармониками напряжений и форма кривой несинусоидального тока аналогична форме кривой напряжения.
В цепи с индуктивным элементом амплитуда тока основной гармоники определяется как , а амплитуды токов всех последующих гармонических составляющих
Так как сопротивление индуктивного элемента увеличивается с переходом к высшим гармоникам, то амплитуда каждой гармоники тока будет уменьшаться обратно пропорционально порядку гармоники, и высшие гармоники тока будут проявляться в меньшей степени в общей кривой тока. Таким образом, кривая тока меньше отличается от синусоиды, чем кривая напряжения. Аналогично в цепи с емкостным элементом амплитуды токов основной и высших гармоник определяются как:
Так как сопротивление емкостного элемента уменьшается с переходом к высшим гармоникам, то амплитуды гармоник тока будут увеличиваться пропорционально порядку гармоники, форма кривой тока будет искажаться еще больше в сравнении с кривой напряжения.
Поскольку с ростом частоты сопротивление индуктивного элемента увеличивается, а емкостного уменьшается, в электрической цепи может возникнуть резонанс напряжений либо для первой, либо для одной из высших гармоник. Условие возникновения резонанса напряжений для некоторой k-гармоники
При этом амплитуда тока резонансной гармоники может значительно превысить амплитуды тока всех остальных гармоник (см. пример 4.3), а на участках электрической цепи как с индуктивным, так и с емкостным элементом могут возникнуть перенапряжения.
В электрических цепях несинусоидального тока при параллельном соединении катушки и конденсатора возможно возникновение резонанса тока либо для первой, либо для одной из высших гармоник с присущими данному резонансу явлениями.