- •1. Основные уравнения четырехполюсников. Определение коэффициентов.
- •2. Уравнения нагруженного четырехполюсника в а-форме. Входные сопротивления. Коэффициент передачи по напряжению и току. Расчет коэффициентов.
- •3. Схемы соединения четырехполюсников. Обратные связи.
- •Каскадное соединение
- •Последовательное соединение
- •4. Схемы замещения четырехполюсников.
- •5. Вторичные (характеристические) параметры четырехполюсников согласованный режим четырехполюсника.
- •6. Несинусоидальные токи. Разложение в ряд Фурье. Частотный спектр несинусоидальной функции напряжения или тока.
- •7. Максимальное, среднее и действующее значения несинусоидального тока.
- •8. Резонанс в цепи несинусоидального тока.
- •9. Мощность цепи несинусоидального тока.
- •10. Высшие гармоники в трехфазных цепях. Простейший утроитель частоты.
- •11. Возникновение переходных процессов в линейных цепях. Законы коммутации.
- •12. Классический метод расчета переходных процессов. Формирование расчетного уравнения, степень расчетного уравнения. Граничные условия.
- •Классический метод расчёта переходных процессов
- •13. Свободный и принужденный режимы. Постоянная времени цепи, определение длительности переходного процесса.
- •14. Периодический заряд конденсатора. Собственная частота колебаний контура. Критическое сопротивление.
- •15. "Некорректные" начальные условия. Особенности расчета. Существуют ли в реальных схемах такие условия?
- •16. 0Пределение корней характеристического уравнения. Обосновать.
- •17.Включение пассивного двухполюсника под действие кусочно-непрерывного напряжения. Формула Дюамеля.
- •Последовательность расчета с использованием интеграла Дюамеля
- •18. Реакция линейных цепей на единичные функции. Переходная и импульсная характеристики цепи, их связь.
- •Переходная и импульсная характеристики
- •19. Применение преобразований Лапласа к расчету переходных процессов. Основные свойства Лапласовых функций.
- •20.Операторные схемы замещения. Обосновать.
- •21.Расчет переходных процессов методом переменных состояния. Формирование расчетных уравнений. Расчет с помощью эвм.
- •22.Преобразование Фурье и его основные свойства. Частотные спектры импульсных сигналов, отличия от частотных спектров периодических несинусоидальных сигналов.
- •23.Расчет частотных характеристик цепи. Определение переходной характеристики по вещественной частотной.
- •24. Особенности применения частотного метода расчета при изучении прохождения сигнала через четырехполюсник.
- •25.Уравнения длинной линии в частных производных. Первичные параметры длинной линии.
- •26. Решение уравнений длинной линии при синусоидальном напряжении. Вторичные параметры длинной линии.
- •27. Волновые процессы в длинной линии. Падающая и отраженная волны. Коэффициент отражения. Входное сопротивление.
- •Дифференциальные уравнения длинной линии
- •Погонные параметры
- •Коэффициенты бегущей и стоячей волны
- •28.Линия без потерь. Стоячие волны.
- •29. Входные сопротивления линии без потерь. Имитация индуктивностей и емкостей.
- •30. Четвертьволновый трансформатор. Согласование линии с нагрузкой. Рассмотрите пример активно-реактивной нагрузки.
- •31. Волновые процессы в линии без потерь, нагруженной на активное сопротивление. Коэффициенты стоячей и бегущей волны.
- •32. Особенности вольт-амперных характеристик нелинейных элементов. Линейные схемы замещения по статическим и дифференциальным параметрам.
- •33. Расчет схем стабилизации напряжений и токов, определение коэффициента стабилизации по линейной схеме замещения.
- •34. Аппроксимация нелинейных характеристик. Аналитический метод расчета.
- •35. Особенности периодических процессов в электрических цепях с инерционными элементами.
- •36. Спектральный состав тока в цепи с нелинейным резистором при воздействии синусоидального напряжения. Комбинационные колебания.
- •37. Метод эквивалентных синусоид. Методы расчета нелинейных цепей по действующим значениям. Метод эквивалентной синусоиды.
- •Метод расчета нелинейных цепей переменного тока по эквивалентным действующим значениям
- •38. Форма кривых тока, магнитного потока и напряжения в нелинейной идеальной катушке. Схема замещения, векторная диаграмма.
- •Расчет тока катушки со сталью с учетом потерь в сердечнике
- •40. Феррорезонанс напряжений. Триггерный эффект.
- •41. Феррорезонанс токов. Скачкообразное изменение напряжения при питании от источника тока.
- •42. Основы метода гармонического баланса. Приведите пример.
- •43. Метод кусочно-линейной аппроксимации характеристик нелинейных элементов. Расчет цепей с вентилями. Схема однополупериодного и двухполупериодного выпрямителя.
- •Цепи с вентильными сопротивлениями
- •44. Расчет схемы однополупериодного выпрямителя с емкостью.
3. Схемы соединения четырехполюсников. Обратные связи.
Рассмотрим три вида соединения четырехполюсников – каскадное (цепная схема соединения, рис. 3.8), параллельное (рис. 3.10) и последовательное (рис. 3.11).
Каскадное соединение
П
усть
в цепной схеме соединения заданыА–параметры
четырехполюсника (АI)
и (АII).
Выразим напряжение и ток на входе
четырехполюсника заданными напряженияими
и токами на выходе последнего
четырехполюсника (в данном случае
второго). Для первого и второго
четырехполюсников справедливо
,
(3.49)
.
(3.50)
.
Если схема состоит из n четырехполюсников, справедливо равенство
, (3.51)
где Aэ – эквивалентная
матрица, равная произведению n матриц,
.
Параллельное соединение
П
ри
параллельном соединении четырехполюсников
(рис. 3.10) напряжения на входе и выходе
четырехполюсников равны:
,
,
т.е. являются общими для всех
четырехполюсников. Поэтому в качестве
системы, описывающей это соединение,
следует выбирать систему уравнений вY–параметрах.
Для схемы (рис. 3.9) справедливо
.
Просуммируем
эти выражения с учетом того, что
,
,
:
.
Если параллельно включено n четырехполюсников, то
. (3.53)
Следовательно, при параллельном соединении четырехполюсников матрица Y–параметров есть сумма матриц Y–параметров отдельных четырехполюсников.
Последовательное соединение
П
ри
последовательном включении
четырехполюсников (рис. 3.11)
,
,
т.е. являются общими для всех
четырехполюсников. Для математического
описания соединения удобно воспользоваться
уравнениями четырехполюсника вZ–параметрах:
,
.
Просуммируем
эти выражения с учетом того, что
,
:
.
Если в схеме n четырехполюсников включены по последовательной схеме, то
. (3.54)
Таким образом, при последовательном соединении четырехполюсников матрица Z–параметров эквивалентного четырехполюсника равна сумме матриц Z–параметров отдельных четырехполюсников.
Выражения (3.52), (3.53), (3.54) дают возможность перейти от сложных схем соединения четырехполюсников к схемам, состоящим из одного четырехполюсника с соответствующими параметрами эквивалентных матриц.
4. Схемы замещения четырехполюсников.
Л
юбой
четырехполюсник можно свести к
сопротивлениям или проводимостям,
соединенным по Т– или П–образной схеме.
Эквивалентной схемой замещения реального
четырехполюсника называется простейший
трехэлементный четырехполюсник (Т–
или П–образный), имеющий такие же
илиA–параметры,
как и заданный четырехполюсник.
Три сопротивления Т– или П–схем должны быть рассчитаны с учетом того, что схема замещения должна обладать такими же А-параметрами, какими обладает заменяемый ей четырехполюсник.
Выразим
и
Т–образной схемы через
,
,
используя уравнения, составленные по
законам Кирхгофа:
(3.18)
Подставляя
в выражение для определения
и группируя однородные члены, получим![]()
.
С другой стороны для данной схемы справедлива общая запись уравнений четырехполюсника в А–параметрах:
![]()
.
Приравняв
коэффициенты при
и
,
получимА–параметры
как функции параметров Т-образной схемы
замещения:
(3.19)
Проведя аналогичные действия, можно получить подобные соотношения для П–образной схемы четырехполюсника:
(3.20)
Два четырехполюсника эквивалентны, если у них равны А–параметры. Это следует из уравнений (3.9). Следовательно, если известны А–параметры какого-то четырехполюсника, то его можно заменить на эквивалентную ему Т– или П–образную схемы замещения, если определить параметры этих схем замещения в выражениях (3.19) и (3.20). При этом для Т–образной схемы замещения
. (3.21)
Параметры
элементов П–образной схемы замещения
![]()
