
- •1.Четырехполюсники и их основные уравнения.
- •2.Определение коэффициентов четырехполюсника.
- •3.Эквивалентные схемы четырехполюсника.
- •4)Характеристическое сопротивление и постоянная передачи симметричного четырёхполюсника.
- •5) Цепные схемы
- •6) Частотные электрические фильтры
- •9.Полосовые и заграждающие фильтры.
- •10)Токи и напряжения в длинных линиях. Напряжения в длинных линиях.
- •11) Уравнения однородной линии
- •12Установившийся режим в однор линии. Характер-ки однор линии. Входное сопротивление линии.
- •17-18.Холостой ход.Короткое замыкание
- •19.Нагрузочный режим линии без потерь.
- •20.Линия как четырехполюсник.
- •21.Элементы и эквивалентные схемы простейших нелинейных цепей.
- •22.Графический метод расчета неразветвленных цепей с нелинейными элементами.
- •23.Графический метод расчета цепей с параллельным соединением нелинейных элементов.
- •24.Графический метод расчета цепей со cмешанным соединением нелинейных и линейных элементов.
- •28) Основные понятия и законы магнитных цепей.
- •29) Расчет неразветвленных магнитных цепей.
- •30) Расчет разветвленных магнитных цепей.
- •31.Явления в нелинейных цепях переменного тока.
- •33.Форма кривой тока в цепи с вентилями. Простейшие выпрямители.
- •34.Расчет тока в катушке со стальным магнитопроводом. Явление феррорезонанса.
- •35.Электромагнитное поле как один из видов материи.
- •36.Электростатическое поле.
- •38.Свободные и связанные заряды. Поляризация, векторы смещения и поляризации.
- •39.Теорема Гаусса.
- •40.Основные уравнения электростатики.
- •41.Поле в проводнике в условиях электростатики.
- •42.Теорема единственности.
- •45. Три группы формул Максвелла
- •44. Метод зеркальных изображений
- •43.Общая характеристика методов расчета электростатического поля. Применение теоремы Гаусса для расчета поля. Поток напряженности электрического поля. Теорема Гаусса в интегральной форме
- •Дивергенция векторного поля. Теорема Гаусса в дифференциальной форме
- •49.Величины, характеризующие эмп
- •50. Законы Ома, Кирхгофа и Джоуля-Ленца в дифференциальной форме.
- •51.Уравнение Лапласа
- •52.Граничные условия для электрического поля постоянного тока.
- •53. Аналогия между электрическим полем и полем в диэлектрике.
- •54.Общая характеристика задач на расчет электрического поля в
- •58) .Векторный и скалярный потенциал. Граничные условия.
- •59) Энергия магнитного поля
- •60)Переменное электромагнитное поле. Полный электрическийток.
- •61. Уравнения Максвелла
- •63.Уравнения Максвелла и теорема Умова-Пойнтинга вкомплексной форме (вопросниочем)
- •63. Уравнения Максвелла и теорема Пойнтинга в комплексной форме (2-ой способ ответа на вопрос для тех кто любит общаться попроще )
6) Частотные электрические фильтры
Частотный электрический фильтр представляет собой четырёхполюсник, включаемый между источником и нагрузкой для того, чтобы пропускать определённый спектр частот. Основными параметрами фильтров являются: коэффициент затухания а(ω) и коэффициент фазы b(ω).
Идеальным называется фильтр, составленный из чисто реактивных элементов.
Существуют следующие типы фильтров:
1)низкочастотные-пропускают
к нагрузке полосу частот от 0 до .
2)
высокочастотные – пропускают от до
.
3)
полосовые – пропускают от
до
.
4)
заграждающий – пропускает от до
,
где
- коэффициент А.
Коэффициент
А является действительным числом. Для
анализа фильтра используются следующие
выражения: chg=A,
,
;
ch(a+jb)=cha
7.Фильтр
высоких частот (ФВЧ) — электронный или
любой другой фильтр, пропускающий
высокие частоты входного
сигнала, при этом подавляя частоты
сигнала нижечастоты
среза.
Степень подавления зависит от конкретного
типа фильтра. Пропуск к нагрузке полосу
частот от 0-ω0. Тобразная схема - Ζт=jωL,
Yт=jωС
П-образная схема Ζп=jωL, Yп=jωС
А=
Коэф. А яв-ся действительным числом.
Термины «высокие частоты» и «низкие частоты» в применении к фильтрам относительны и зависят от выбранной структуры и параметров фильтра.
Простейший электронный фильтр высоких частот состоит из последовательно соединённых конденсатораирезистора. Конденсатор пропускает лишь переменный ток, а выходное напряжение снимается с резистора. Произведение сопротивления на ёмкость (R×C) являетсяпостоянной временидля такого фильтра, которая обратно пропорциональна частоте среза вгерцах:
Фильтры высоких частот используются в простых бестрансформаторных конденсаторных преобразователях напряжения для понижения напряжения переменного тока. К недостаткам таких преобразователей относится их высокая чувствительность к импульсным помехам в источнике переменного тока, а также зависимость выходного напряжения от импеданса нагрузки[1].
Фильтры высоких частот используются в обработке изображений для того, чтобы осуществлять преобразования в частотной области (например, для выделения границ).
Используется также последовательное включение фильтра высоких частот с фильтром нижних частот (ФНЧ). Если при этом частота среза ФВЧ меньше, чем частота среза ФНЧ (то есть, имеется диапазон частот, в котором оба фильтра пропускают сигнал), получится полосовой фильтр (используется для выделения из сигнала определённой полосы частот).
8)
Фильтр низких часто́т (ФНЧ) — электронный или
любой другой фильтр, эффективно
пропускающий частотный спектр сигнала ниже
частоты
среза,
и подавляющий частоты сигнала выше этой
частоты. ФНЧ высокочастотные пропускают
от ω-∞. ω0=1/2
. Степень подавления каждой частоты
зависит от вида фильтра. Тобразная схема
– Ζт = Ζп=1/jωС, Yт= Yп=1/jωL
А=
В отличие от фильтра нижних частот (НЧ), фильтр верхних частот пропускает частоты сигнала выше частоты среза, подавляя низкие частоты.
Электронные фильтры нижних частот используются для подавления пульсаций напряжения на выходе выпрямителей переменного тока, для разделения частотных полос в акустических системах, в системах передачи данных для подавления высокочастотных помех и ограничения спектра сигнала, а также имеют большое число других применений.
Радиопередатчики используют ФНЧ для блокировки гармонических излучений, которые могут взаимодействовать с низкочастотным полезным сигналом и создавать помехи другим радиоэлектронным средствам.