Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты с ответами / obschshpora_1_1.doc
Скачиваний:
370
Добавлен:
16.02.2017
Размер:
4.64 Mб
Скачать

Дивергенция векторного поля. Теорема Гаусса в дифференциальной форме

Произвольному векторному полю (т.е. некоторой векторной функции , заданной в точках (x,y,z) некоторой области пространства) можно сопоставить скалярную функцию, называемую дивергенцией поля F. Эта функция обозначается символом «div» и определяется соотношением

.                (1.4.1)

Физический смысл дивергенции следует из формулы, доказываемой в курсе высшей математики:

.                                                           (1.4.2)

При предельном переходе объем V и его поверхность S стягиваются в точку наблюдения, в которой вычисляется дивергенция. Согласно (1.4.1), поток напряженности E через любую бесконечно малую сферу, внутри которой нет зарядов, – тождественный нуль. Поэтому из (1.4.2) следует, что в точках с нулевой плотностью зарядов (r=0) дивергенция E равна нулю. Рассмотрев поток через малую сферу V вокруг точки, в которой дивергенция напряженности не равна нулю, можно показать с помощью (1.4.1) и (1.4.2) , что в такой точке объемный заряд есть, поэтому точки, в которых дивергенция напряженности отлична от нуля, являются источниками силовых линий.

В курсе математики доказывается теорема Остроградского-Гаусса (была установлена К. Гауссом в 1844 независимо от  М.В. Остроградского, доказавшего ее в 1839):

.                                                                        (1.4.3)

Здесь V – произвольный объем, ограниченный поверхностью S. Применим теорему (1.4.3) к потоку электростатического поля. С учетом (1.4.1) получим:

.                                          (1.4.4)

Из равенства интегралов ввиду произвольности объема V следует равенство подынтегральных выражений, т.е. теорема Гаусса в дифференциальной форме(А. Пуассон, 1850 г.):

.        

(1.4.5)

Из тех областей пространства, в которых дивергенция Е положительна, силовые линии Е исходят (r>0), в тех областях, где divE < 0  силовые линии заканчиваются (r<0), а через те области, где divE = 0 силовые линии проходят, но не рождаются и не исчезают, так как в этих областях r=0 (зарядов нет).

49.Величины, характеризующие эмп

Вектором напряженности электрического поля в точке Q называется вектор силы, действующей на электрически заряженную неподвижную частицу, помещенную в точку Q , если эта частица имеет единичный положительный заряд.

В соответствии с этим определением электрическая сила, действующая на точечный заряд q равна:

,

где E измеряется в В/м.

Магнитное поле характеризуется вектором магнитной индукции. Магнитная индукция в некоторой точке наблюдения Q - это векторная величина, модуль которой равен магнитной силе, действующей на заряженную частицу, находящуюся в точке Q , имеющую единичный заряд и движущуюся с единичной скоростью, причем векторы силы, скорости, магнитной индукции, а также заряд частицы удовлетворяют условию

.

Магнитная сила, действующая на криволинейный проводник с током может быть определена по формуле

.

На прямолинейный проводник, если он находится в однородном поле, действует следующая магнитная сила

.

Во всех последних формулах B - магнитная индукция, которая измеряется в теслах (Тл).

1 Тл - это такая магнитная индукция, при которой на прямолинейный проводник с током 1А действует магнитная сила, равная 1Н, если линии магнитной индукции направлены перпендикулярно проводнику с током, и если длина проводника равна 1м.

Кроме напряженности электрического поля и магнитной индукции в теории электромагнитного поля рассматриваются следующие векторные величины:

1) электрическая индукция D (электрическое смещение), которая измеряется в Кл/м2,

2) напряженность магнитного поля H, которая измеряется в А/м.

Векторы ЭМП являются функциями пространства и времени:

,

где Q - точка наблюдения, t - момент времени.

Если точка наблюдения Q находится в вакууме, то между соответствующими парами векторных величин имеют место следующие соотношения

,

,

где  - абсолютная диэлектрическая проницаемость вакуума (основная электрическая постоянная), =8,85419*10-12 ;

 - абсолютная магнитная проницаемость вакуума (основная магнитная постоянная);  = 4π*10-7 .

Если под воздействием внешних источников в проводящей среде создано электрическое поле, то в ней будет протекать электрический ток. Свойство среды, характеризующее ее способность проводить ток, называется удельной проводимостью. Она зависит от физических свойств проводящего материала и температуры, измеряется в См/м.

Основной величиной в электрическом поле проводящей среды является плотность тока . Это векторная величина, направленная по напряженности электрического поля.

Ток определяют как поток вектора плотности тока

 (16.1)

Ток является скалярной алгебраической величиной.

При протекании постоянных токов как внутри проводящих тел, так и вне их существуют постоянные магнитные поля. Так как эти поля неизменны во времени, то в поле явление электромагнитной индукции отсутствует. Поэтому электрическое и магнитное поле постоянного тока можно рассматривать раздельно.

Соседние файлы в папке Билеты с ответами