Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
52
Добавлен:
16.02.2017
Размер:
103.42 Кб
Скачать

1. Потенциальная диаграмма

Потенциальной диаграммой называется графическое изображение распределения электрического потенциала вдоль замкнутого контура в зависимости от сопротивления участков, входящих в выбранный контур.

Для построения потенциальной диаграммы выбирают замкнутый контур. Этот контур разбивают на участки таким образом, чтобы на участке находился один потребитель или источник энергии. Пограничные точки между участками необходимо обозначить буквами или цифрами.

Произвольно заземляют одну точку контура, её потенциал условно считается нулевым. Обходя контур по часовой стрелке от точки с нулевым потенциалом, определяют потенциал каждой последующей пограничной точки как алгебраической суммы потенциала предыдущей точки и изменения потенциала между этими соседними точками.

Изменение потенциала на участке зависит от состава цепи между точками. Если на участке включен потребитель энергии (резистор), то изменение потенциала численно равно падению напряжения на этом резисторе. Знак этого изменения определяют направлением тока. При совпадении направлений тока и обхода контура знак отрицательный, в противном случае он положительный.

Если на участке находится источник ЭДС, то изменение потенциала здесь численно равно величине ЭДС данного источника. При совпадении направления обхода контура и направления ЭДС изменение потенциала положительно, в противном случае оно отрицательно.

После расчета потенциалов всех точек строят в прямоугольной системе координат потенциальную диаграмму. На оси абсцисс откладывают в масштабе сопротивление участков в той последовательности, в которой они встречались при обходе контура, а по оси ординат – потенциалы соответствующих точек. Потенциальная диаграмма начинается с нулевого потенциала и заканчивается после обхода контура таковым.

2. Пассивный двухполюсник в цепи синусоидального тока

  На рис. 24.1 показан пассивный двухполюсник, состоящий из активных и реактивных элементов. Действующие значения напряжения U, тока I и угол сдвига фаз между ними φ известны.

    Построим по этим значениям векторную диаграмму и, спроектировав вектор напряжения на вектор тока и перпендикулярное к нему направление, получим треугольник напряжений, образованный сторонами Ua, Up, U (рис. 24.2 а).

    Схема называется последовательной схемой замещения или последовательной эквивалентной схемой пассивного двухполюсника, а ее параметры R , X и Z – эквивалентными сопротивлениями двухполюсника.

     Треугольник, образованный сторонами R, X, Z и подобный треугольнику напряжений, представляет собой треугольник сопротивлений

    Теперь разложим вектор тока на две составляющие Ia – активную , направленную по вектору напряжения, и реактивную Ip, перпендикулярную к нему (рис. 24.3, а). Такой векторной диаграмме соответствует параллельная схема замещения двухполюсника (рис. 24.3, б). Ее параметры G, B и Y называются эквивалентными проводимостями. Токи в элементах G и B мы и представляем как активную и реактивную составляющие общего тока: Ia=GU, Ip=BU. Из треугольника токов (рис. 24.3, а) получается треугольник проводимостей.

    Получим условия эквивалентности приведенных схем.

    Для последовательной цепи U=IZ, для параллельной I=YU, а так как токи и напряжения в обеих схемах одинаковы, то: Y=1/Z и Z=1/Y

    т.е. в любой электрической цепи полная проводимость есть величина, обратная полному сопротивлению.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 5

Соседние файлы в папке Билеты с ответами