
- •Силовая электроника
- •1. Полупроводниковые приборы
- •1.1. Электропроводность полупроводников
- •1.1.1. Образование носителей заряда в собственных полупроводниках
- •1.1.2. Образование носителей заряда в примесных полупроводниках
- •1.1.3.Дрейфовое и диффузионное движение носителей заряда
- •1.2.Полупроводниковые диоды
- •1.2.1.Принцип действия и вольтамперная характеристика (вах) диода
- •1.2.2. Виды диодов
- •1.3. Биполярные транзисторы
- •1.3.1. Принцип действия транзистора.
- •1.3.2.Статические вах транзистора
- •1.4. Униполярные (полевые) транзисторы.
- •1.4.1. Полевые транзисторы с p-n переходом.
- •1.4.2. Мдп - транзисторы.
- •1.5. Тиристоры
- •1.5.1. Классификация тиристоров
- •1.5.2. Принцип работы диодного тиристора
- •1.5.3. Принцип работы триодного тиристора.
- •2. Усилители
- •2.1.Назначение и классификация усилителей
- •2.2. Принцип построения усилительных каскадов.
- •2.3. Усилительный каскад с общим эмиттером.
- •2.4. Многокаскадные усилители с конденсаторной связью.
- •2.5. Усилители мощности.
- •2.5.1 Усилитель мощности класса а с трансформаторным включением нагрузки (рисунок 2.6)
- •2.5.2. Двухтактный усилитель мощности (рисунок 2.7)
- •2.6. Усилители с обратной связью
- •2.7.Усилители постоянного тока (упт)
- •2.8. Операционные усилители (оу).
- •2.8.1. Инвертирующий усилитель (рисунок 2.19)
- •2.9.1. Компараторы. Триггер Шмитта
- •2.9.2. Мультивибраторы
- •2.9.3. Одновибраторы
- •3. Выпрямители
- •3.1. Структурная схема источника питания постоянного напряжения
- •3.1. Однофазный двухполупериодный неуправляемый выпрямитель с нулевым выводом.
- •3.2.1. Работа выпрямителя при активно-индуктивной нагрузке.
- •3.2.2. Работа выпрямителя при активно-ёмкостной нагрузке
- •3.3. Однофазный мостовой выпрямитель
- •3.4. Мостовой выпрямитель с нулевой точкой трансформатора
- •3.5. Трёхфазный выпрямитель с нулевым выводом
- •3.6. Трёхфазный мостовой выпрямитель
- •3.6. Управляемый выпрямитель однофазного тока
- •4. Коммутация однооперационных тиристоров
- •4.1. Узлы параллельной коммутации.
- •4.2. Узлы последовательной коммутации
- •5. Импульсные преобразователи постоянного напряжения
- •5.1. Методы импульсного регулирования постоянного напряжения
- •5.2. Иппн с параллельной коммутацией и коммутирующим контуром, подключаемым параллельно силовому тиристору
- •5.3. Иппн с последовательной коммутацией
- •6. Инверторы.
- •6.1. Автономные инверторы тока (аит)
- •6.1.1. Однофазный параллельный инвертор тока.
- •6.1.2. Трехфазный параллельный аит
- •6.2. Автономные резонансные инверторы (аир).
- •6.2.1. Последовательный аир
- •6.2.2. Последовательный аир со встречными диодами.
- •6.3. Автономные инверторы напряжения.
- •6.3.1. Способ формирования выходного напряжения инвертора в виде импульсов чередующейся полярности и одинаковой длительности.
- •6.3.2. Широтно-импульсный способ формирования и регулирования выходного напряжения инвертора.
- •6.3.2.1. Шир с зависящей от параметров нагрузки формой кривой выходного напряжения.
- •6.3.2.2. Шир с не зависящей от параметров нагрузки формой кривой выходного напряжения.
- •6.3.3. Формирование кривой выходного напряжения инвертора с уменьшенным содержанием гармонических.
- •7. Оптоэлектроника
- •7.1. Управляемые источники света
- •7.2. Фотоприёмники.
- •2.Фотодиоды.
- •3. Фототранзисторы (рисунок 7.8).
- •4. Фототиристоры.
- •7.3. Световоды и простейшие оптроны
- •8. Цифровая техника
- •8.1.Аксиомы, законы, тождества и теоремы алгебры логики
- •8.2. Логические элементы на диодах и биполярных транзисторах.
- •8.2.1. Логический элемент или.
- •8.2.2. Логический элемент и.
- •8.2.3. Логический элемент не.
- •8.2.4. Логический элемент или-не.
- •8.2.5. Логический элемент и-не.
- •8.3. Параметры логических элементов.
- •8.4.Логические элементы на полевых транзисторах.
- •8.4.1. Логический элемент не.
- •8.4.2. Логический элемент или-не.
- •8.4.3.Логический элемент и-не.
6.3.3. Формирование кривой выходного напряжения инвертора с уменьшенным содержанием гармонических.
Содержание гармонических может быть существенно снижено при использовании широтно-импульсной модуляции (ШИМ), при которой кривая Uн(t) формируется в виде импульсов, промодулированных по синусоидальному закону (рисунок 5.8).
Применение ШИМ обеспечивает преимущественное содержание в кривой Uн(t) основной гармоники и минимальное содержание высших гармонических с близкими к основной гармонике частотами (3,5,7), хотя гармоники с более высокими частотами могут быть значительны. Но эти гармоники легко фильтруются, с помощью простейших фильтров, устанавливаемых перед нагрузкой. Регулирование выходного напряжения осуществляется изменением ширины выходных импульсов (глубины модуляции). Кривая Uн(t), рисунок 5.8 характеризует однополярную ШИМ, т.к. выходные импульсы в течение полупериода имеют одинаковую полярность.
Применяется также двухполярная ШИМ, при которой вместо пауз в кривой Uн(t) содержатся импульсы противоположной полярности (рисунок 5.9). Поскольку этот метод обеспечивает исключение некоторых, в частности, наиболее низших гармоник, его называют методом избирательного исключения гармонических.
Метод основывается на задании фиксированных углов γ1 и γ2 переключения тиристоров в инверторе. При γ1=23,62° и γ2=33,3° в кривой Uн(t) отсутствуют 3-я и 5-я гармоники. При γ1=16,25° и γ2=22,07° - отсутствуют 5-я и 7-я гармоники. Регулирование выходного напряжения можно производить либо по цепи питания, либо с помощью самого инвертора путём изменения фазового сдвига сигналов управления одной пары тиристоров полумоста относительно сигналов управления другой пары при переключении тиристоров в каждом полумосте с указанными значениями углов γ.
7. Оптоэлектроника
Оптоэлектроникой называют научно-техническое направление, в котором для передачи, хранения и обработки информации используют электрические и оптические средства и методы.
В оптоэлектронике световой луч выполняет те же функции, что и электрический сигнал в электрических цепях – это управление, преобразование и связь.
Оптоэлектронные устройства обладают следующими преимуществами перед электронными устройствами:
Полная гальваническая развязка между входной и выходной цепями.
Отсутствует обратное влияние приёмника сигнала на его источник.
Так как в оптической цепи носителями заряда являются электрически нейтральные фотоны, то на них не влияют помехи, вызванные электрическими и магнитными полями. В электронных же цепях носителями заряда являются электроны, имеющие определённый электрический заряд и взаимодействующими с внешними электрическими и магнитными полями, что искажает выходной сигнал.
Недостатки оптоэлектронных устройств:
Температурная нестабильность характеристик.
Сравнительно большая потребляемая мощность.
Меньшие функциональные возможности по сравнению с микросхемами.
Жесткие требования к технологии изготовления.
Поэтому компоненты оптоэлектроники и электроники существуют, не отрицая друг друга, и каждый из них используется в той области, где применение его более целесообразно.
Основным компонентом оптоэлектроники является «пара с фотонной связью», называемая оптроном. Простейший оптрон состоит из: источника света, световода и приёмника света. Входной электрический сигнал в виде импульса или перепада входного тока возбуждает фотоизлучатель и вызывает световое излучение. Световой сигнал по световоду попадает в фотоприёмник, на выходе которого образуется электрический импульс или перепад выходного тока. В оптронах такого типа внутренняя связь – фотонная, а внешняя – электрическая.