
- •Силовая электроника
- •1. Полупроводниковые приборы
- •1.1. Электропроводность полупроводников
- •1.1.1. Образование носителей заряда в собственных полупроводниках
- •1.1.2. Образование носителей заряда в примесных полупроводниках
- •1.1.3.Дрейфовое и диффузионное движение носителей заряда
- •1.2.Полупроводниковые диоды
- •1.2.1.Принцип действия и вольтамперная характеристика (вах) диода
- •1.2.2. Виды диодов
- •1.3. Биполярные транзисторы
- •1.3.1. Принцип действия транзистора.
- •1.3.2.Статические вах транзистора
- •1.4. Униполярные (полевые) транзисторы.
- •1.4.1. Полевые транзисторы с p-n переходом.
- •1.4.2. Мдп - транзисторы.
- •1.5. Тиристоры
- •1.5.1. Классификация тиристоров
- •1.5.2. Принцип работы диодного тиристора
- •1.5.3. Принцип работы триодного тиристора.
- •2. Усилители
- •2.1.Назначение и классификация усилителей
- •2.2. Принцип построения усилительных каскадов.
- •2.3. Усилительный каскад с общим эмиттером.
- •2.4. Многокаскадные усилители с конденсаторной связью.
- •2.5. Усилители мощности.
- •2.5.1 Усилитель мощности класса а с трансформаторным включением нагрузки (рисунок 2.6)
- •2.5.2. Двухтактный усилитель мощности (рисунок 2.7)
- •2.6. Усилители с обратной связью
- •2.7.Усилители постоянного тока (упт)
- •2.8. Операционные усилители (оу).
- •2.8.1. Инвертирующий усилитель (рисунок 2.19)
- •2.9.1. Компараторы. Триггер Шмитта
- •2.9.2. Мультивибраторы
- •2.9.3. Одновибраторы
- •3. Выпрямители
- •3.1. Структурная схема источника питания постоянного напряжения
- •3.1. Однофазный двухполупериодный неуправляемый выпрямитель с нулевым выводом.
- •3.2.1. Работа выпрямителя при активно-индуктивной нагрузке.
- •3.2.2. Работа выпрямителя при активно-ёмкостной нагрузке
- •3.3. Однофазный мостовой выпрямитель
- •3.4. Мостовой выпрямитель с нулевой точкой трансформатора
- •3.5. Трёхфазный выпрямитель с нулевым выводом
- •3.6. Трёхфазный мостовой выпрямитель
- •3.6. Управляемый выпрямитель однофазного тока
- •4. Коммутация однооперационных тиристоров
- •4.1. Узлы параллельной коммутации.
- •4.2. Узлы последовательной коммутации
- •5. Импульсные преобразователи постоянного напряжения
- •5.1. Методы импульсного регулирования постоянного напряжения
- •5.2. Иппн с параллельной коммутацией и коммутирующим контуром, подключаемым параллельно силовому тиристору
- •5.3. Иппн с последовательной коммутацией
- •6. Инверторы.
- •6.1. Автономные инверторы тока (аит)
- •6.1.1. Однофазный параллельный инвертор тока.
- •6.1.2. Трехфазный параллельный аит
- •6.2. Автономные резонансные инверторы (аир).
- •6.2.1. Последовательный аир
- •6.2.2. Последовательный аир со встречными диодами.
- •6.3. Автономные инверторы напряжения.
- •6.3.1. Способ формирования выходного напряжения инвертора в виде импульсов чередующейся полярности и одинаковой длительности.
- •6.3.2. Широтно-импульсный способ формирования и регулирования выходного напряжения инвертора.
- •6.3.2.1. Шир с зависящей от параметров нагрузки формой кривой выходного напряжения.
- •6.3.2.2. Шир с не зависящей от параметров нагрузки формой кривой выходного напряжения.
- •6.3.3. Формирование кривой выходного напряжения инвертора с уменьшенным содержанием гармонических.
- •7. Оптоэлектроника
- •7.1. Управляемые источники света
- •7.2. Фотоприёмники.
- •2.Фотодиоды.
- •3. Фототранзисторы (рисунок 7.8).
- •4. Фототиристоры.
- •7.3. Световоды и простейшие оптроны
- •8. Цифровая техника
- •8.1.Аксиомы, законы, тождества и теоремы алгебры логики
- •8.2. Логические элементы на диодах и биполярных транзисторах.
- •8.2.1. Логический элемент или.
- •8.2.2. Логический элемент и.
- •8.2.3. Логический элемент не.
- •8.2.4. Логический элемент или-не.
- •8.2.5. Логический элемент и-не.
- •8.3. Параметры логических элементов.
- •8.4.Логические элементы на полевых транзисторах.
- •8.4.1. Логический элемент не.
- •8.4.2. Логический элемент или-не.
- •8.4.3.Логический элемент и-не.
5.2. Иппн с параллельной коммутацией и коммутирующим контуром, подключаемым параллельно силовому тиристору
Схема содержит: силовой тиристор VSс, коммутирующий тиристор VSк, перезарядный тиристор VSп, диоды VD и VD0, коммутирующий конденсатор Ск, дроссель Lк, нагрузку Zн. Дроссель сглаживающего фильтра не показан, т. к. будем считать, что он учитывается суммарной индуктивностью нагрузки Zн. Начало формирования выходного напряжения обуславливается подачей управляющего импульса на VSс. Процесс коммутации происходит с приходом управляющего импульса на отпирание VSк. Поступление импульса управления на VSп происходит одновременно с VSс.
Пуск схемы связан с подачей управляющего импульса на VSк , при запертом VSс. При отпирании VSК происходит заряд конденсатора по цепи (+Е) - Ск - Lк - VSк - Zн – (-Е) до напряжения, близкого к Е полярностью в скобках. Рассмотрим процессы, протекающие в схеме в установившемся режиме.
К моменту t1, Ск заряжен до U(0) с полярностью в скобках и к тиристору VSс приложено напряжение Е в прямом направлении. Uн=0, ток нагрузки проводит диод VD0. К параллельно включенным VSк и VSп прикладывается напряжение равное U(0)-Е, для VSп в прямом направлении, для VSк – в обратном.
В
момент t1
отпирается VSс
. К нагрузке прикладывается напряжение
Е, VD0
запирается. Через нагрузку протекает
ток от источника питания. В связи с
отпиранием в тот же момент VSп,
создается контур (+Ск)
- VSс
- VSп
- Lк
– (-Ск)
для перезаряда конденсатора. К концу
перезаряда Ск,
полярность без скобок, к VSп
прикладывается обратное напряжение и
он запирается. Для запирания VSс
в момент t3
открывается VSк.
На интервале t3-t4
происходит уменьшение до нуля тока
силового тиристора. На интервале t4-t5
к VSс
прикладывается обратное напряжение,
равное падению напряжения на диоде VD
от протекания через него тока
.
В моментt5
,
ток черезVD
равен нулю и он закрывается. Полярность
Ск
в скобках, а величина превышает Е. Поэтому
открывается VD0
, образуя цепь замыкания тока iн,
напряжение Uн=0,
к тиристору VSс
прикладывается напряжение Е в прямом
направлении. При запирании VD
и отпирании VD0
процесс перезаряда конденсатора Ск
завершается по контуру Е - Ск
- Lк
- VSк
- VD0-Е.
(интервал t5-t6).
При этом ток диода VD0
равен
.
Завершающий этап обуславливается
отдачей энергии, накопленной вLк
в цепь источника питания и конденсатор.
Он характеризуется уменьшением iс
до нуля и дозарядом Ск.
После спадания iс
до нуля VSк
запирается обратным напряжением U(0)-E.
Пауза tп
в кривой выходного напряжения продолжается
до прихода в момент t7
импульса управления на отпирание
тиристоров VSс
и VSп
. Из анализа процессов в преобразователе
видно, что уменьшения выходного напряжения
до нуля происходит не в момент отпирания
VSк
, а спустя время tс,
в течение которого ток нагрузки протекает
через VSс
и VD.
Это вызывает как бы дополнительного
импульса в кривой Uн
на интервале tс
(заштрихованная площадка).
Рисунок 5.3