
- •Силовая электроника
- •1. Полупроводниковые приборы
- •1.1. Электропроводность полупроводников
- •1.1.1. Образование носителей заряда в собственных полупроводниках
- •1.1.2. Образование носителей заряда в примесных полупроводниках
- •1.1.3.Дрейфовое и диффузионное движение носителей заряда
- •1.2.Полупроводниковые диоды
- •1.2.1.Принцип действия и вольтамперная характеристика (вах) диода
- •1.2.2. Виды диодов
- •1.3. Биполярные транзисторы
- •1.3.1. Принцип действия транзистора.
- •1.3.2.Статические вах транзистора
- •1.4. Униполярные (полевые) транзисторы.
- •1.4.1. Полевые транзисторы с p-n переходом.
- •1.4.2. Мдп - транзисторы.
- •1.5. Тиристоры
- •1.5.1. Классификация тиристоров
- •1.5.2. Принцип работы диодного тиристора
- •1.5.3. Принцип работы триодного тиристора.
- •2. Усилители
- •2.1.Назначение и классификация усилителей
- •2.2. Принцип построения усилительных каскадов.
- •2.3. Усилительный каскад с общим эмиттером.
- •2.4. Многокаскадные усилители с конденсаторной связью.
- •2.5. Усилители мощности.
- •2.5.1 Усилитель мощности класса а с трансформаторным включением нагрузки (рисунок 2.6)
- •2.5.2. Двухтактный усилитель мощности (рисунок 2.7)
- •2.6. Усилители с обратной связью
- •2.7.Усилители постоянного тока (упт)
- •2.8. Операционные усилители (оу).
- •2.8.1. Инвертирующий усилитель (рисунок 2.19)
- •2.9.1. Компараторы. Триггер Шмитта
- •2.9.2. Мультивибраторы
- •2.9.3. Одновибраторы
- •3. Выпрямители
- •3.1. Структурная схема источника питания постоянного напряжения
- •3.1. Однофазный двухполупериодный неуправляемый выпрямитель с нулевым выводом.
- •3.2.1. Работа выпрямителя при активно-индуктивной нагрузке.
- •3.2.2. Работа выпрямителя при активно-ёмкостной нагрузке
- •3.3. Однофазный мостовой выпрямитель
- •3.4. Мостовой выпрямитель с нулевой точкой трансформатора
- •3.5. Трёхфазный выпрямитель с нулевым выводом
- •3.6. Трёхфазный мостовой выпрямитель
- •3.6. Управляемый выпрямитель однофазного тока
- •4. Коммутация однооперационных тиристоров
- •4.1. Узлы параллельной коммутации.
- •4.2. Узлы последовательной коммутации
- •5. Импульсные преобразователи постоянного напряжения
- •5.1. Методы импульсного регулирования постоянного напряжения
- •5.2. Иппн с параллельной коммутацией и коммутирующим контуром, подключаемым параллельно силовому тиристору
- •5.3. Иппн с последовательной коммутацией
- •6. Инверторы.
- •6.1. Автономные инверторы тока (аит)
- •6.1.1. Однофазный параллельный инвертор тока.
- •6.1.2. Трехфазный параллельный аит
- •6.2. Автономные резонансные инверторы (аир).
- •6.2.1. Последовательный аир
- •6.2.2. Последовательный аир со встречными диодами.
- •6.3. Автономные инверторы напряжения.
- •6.3.1. Способ формирования выходного напряжения инвертора в виде импульсов чередующейся полярности и одинаковой длительности.
- •6.3.2. Широтно-импульсный способ формирования и регулирования выходного напряжения инвертора.
- •6.3.2.1. Шир с зависящей от параметров нагрузки формой кривой выходного напряжения.
- •6.3.2.2. Шир с не зависящей от параметров нагрузки формой кривой выходного напряжения.
- •6.3.3. Формирование кривой выходного напряжения инвертора с уменьшенным содержанием гармонических.
- •7. Оптоэлектроника
- •7.1. Управляемые источники света
- •7.2. Фотоприёмники.
- •2.Фотодиоды.
- •3. Фототранзисторы (рисунок 7.8).
- •4. Фототиристоры.
- •7.3. Световоды и простейшие оптроны
- •8. Цифровая техника
- •8.1.Аксиомы, законы, тождества и теоремы алгебры логики
- •8.2. Логические элементы на диодах и биполярных транзисторах.
- •8.2.1. Логический элемент или.
- •8.2.2. Логический элемент и.
- •8.2.3. Логический элемент не.
- •8.2.4. Логический элемент или-не.
- •8.2.5. Логический элемент и-не.
- •8.3. Параметры логических элементов.
- •8.4.Логические элементы на полевых транзисторах.
- •8.4.1. Логический элемент не.
- •8.4.2. Логический элемент или-не.
- •8.4.3.Логический элемент и-не.
5. Импульсные преобразователи постоянного напряжения
Рисунок 5.1
ИППН предназначены для изменения значения постоянного напряжения. Они служат для питания нагрузки постоянным напряжением UН, отличающиеся от напряжения источника питания Е. При этом иногда необходимо стабилизировать Uн при изменении Е и тока нагрузки или изменять Uн по определенному закону независимо от Е.
Выходное напряжение таких преобразователей характеризуется последовательностью импульсов прямоугольной формы с длительностью tи и паузой tп (рисунок 5.1), амплитуда которых близка к Е, а среднее значение выходного напряжения Uн.
В основе принципа действия ИППН лежит ключевой режим работы регулирующего полупроводникового прибора, осуществляющего периодическое подключение источника питания Е к выходной цепи преобразователя.
5.1. Методы импульсного регулирования постоянного напряжения
Регулирование выходного напряжения ИППН осуществляется импульсными методами путем изменения параметров выходных сигналов. Наибольшее применение нашли широтно-импульсный, частотно-импульсный методы и их комбинация.
Широтно-импульсный
метод регулирования (ШИР) осуществляется
изменением длительности (ширины) выходных
импульсов tи
при неизменном периоде их следования
T=const;
.
Среднее значение выходного напряжения
преобразователя при ШИР:
,
(5.1)
где
-
коэффициент регулирования.
В соответствии с этой формулой диапазон регулирования выходного напряжения ИППН с ШИР составляют от нуля (tи =0; γ=0) до Е (tи =T; γ=1).
Рисунок 5.2
Частотно-импульсное
регулирование (ЧИР) производится за
счет изменения частоты следования
выходных импульсов
при
неизменной их длительности tи
=const.
Регулировочные возможности преобразователя
характеризуются соотношением:
(5.2)
Выходному
напряжению Е соответствует предельная
частота следования импульсов, равная
,
а нулевому выходному напряжению
.
Совместное
применение ШИР и ЧИР заключается в
изменении двух параметров выходных
импульсов tи
и
и называется комбинированным.
Рассмотрим наиболее распространенные принципы построения схем ИППН (рисунок 5.2.а). Регулирующий элемент условно покажем в виде ключа, функцию которого обычно выполняет тиристор или силовой транзистор. В выходную цепь входит нагрузка Zн активно-индуктивного характера и при необходимости сглаживающий дроссель Lф. Иногда применяются более сложные сглаживающие фильтры, например Г - образный LC фильтр. Диод VD0 предназначен для создания контура протекания тока нагрузки при разомкнутом ключе К.
Рассмотрим
процессы протекающие в таком
преобразователе. На интервалах включенного
состояния ключа t1-t2,
t3-t4,
t5-t6
напряжение подключается ко входу
сглаживающего фильтра , Uвых=Е,
диод VD0
закрыт. Через нагрузку протекает ток
iн
по цепи (+Е)-К- Lф-Zн
–(-Е). На интервалах отключенного
состояния ключа t2-t3,
t4-t5
связь выходной цепи с источником питания
отсутствует, однако ток через нагрузку
продолжается. Он поддерживается энергией,
накопленной реактивными элементами –
дросселем Lф
и индуктивностью нагрузки Lн
и замыкается через VD0
вследствие чего Uвых=0.
Без учета падений напряжения на активных
сопротивлениях дросселя Lф
и подводящих проводом Uн=Uвых
, определяется средним значением Uвых(t)
и находится по формулам 4.1 и 4.2. Ток iн
состоит из участков экспонент нарастания
и спадания с постоянной времени
.
Среднее значение тока
.
При переходе к большим мощностям нагрузки (свыше 100кВт) возникают трудности в построении преобразователей по рассмотренной схеме. Они вызваны большими токами , и необходимостью применения большого числа параллельно включенных тиристоров. Кроме того, трудно осуществима конструкция дросселя с большой индуктивностью. ИППН большой мощности выполняют по многотактному принципу, основанному на параллельном включении Т-отдельных преобразователей, работающих на общую нагрузку от общего источника постоянного тока.