- •Общая неорганическая химия.
- •3. Железо и его соединения. Биологическая роль.
- •4. Ионное произведение воды. Водородный показатель.
- •5. Силы Ван-дер-Ваальса.
- •6. Алюминий и его соединения.
- •7. Упругость пара над раствором. Законы Рауля.
- •8. Хром и его соединения. Биологическая роль.
- •9. Ионная связь.
- •10. Бор и его соединения. Биологическая роль.
- •11. Кислородосодержащие кислоты хлора. Соли этих кислот. Биологическая роль.
- •12. Координационная теория Вернера.
- •13. Классификация и изомерия комплексных соединений.
- •14. Щелочные металлы. Биологическая роль.
- •15. Кислородосодержащие кислоты серы. Соли этих кислот.
- •16. Понятие о квантовой механике.
- •17. Многоэлектонные атомы и периодический закон.
- •18. Окисли азота.
- •19. Окислительно-восстановительные реакции.
- •20. Аммиак и его свойства.
- •21. Водородные соединения галогенов. 22. Галогеноводородные кислоты.
- •23. Метод молекулярных орбиталей.
- •24. Теория электролитической диссоциации.
- •25. Константа и степень электролитической диссоциации.
- •26. Азотная кислота и ее соли.
- •27. Гибридизация атомных орбиталей.
- •28. Фосфор и его свойства.
- •29. Периодичность изменения свойств элементов и их соединений.
- •30. Гидролиз.
- •31. Метод валентных связей.
- •32. Благородные газы.
- •33. Термохимические законы.
- •34. Кислород, его физические и химические свойства. Биологическая роль.
- •35. Металлическая связь.
- •36. Хлор и его свойства. Биологическая роль.
- •37. Водород, вода, их физические и химические свойства. Применение в медицине. Биологическая роль.
- •38. Современная химическая атомистика.
- •39. Осмос. Осмотическое давление. Закон Вант Гоффа.
- •40. Сера, ее физические и химические свойства. Биологическая роль.
- •41. Теория Бора.
- •42. Кремний и его соединения. Биологическая роль.
- •43. Скорость химических реакций. Химическое равновесие.
- •44. Понятие об активном комплексе и энергии активации.
- •45. Серная кислота. Соли серной кислоты.
- •46. Растворы. Растворимость как физико-химический прочес (гидратная теория, теория Менделеева).
- •47. Мышьяк и его соединения. Биологическая роль.
35. Металлическая связь.
Металлическая связь – это связь, образованная между атомами в условиях сильновыраженной делокализации (распространение валентных электронов по нескольким химическим связям в соединении) и дефицита электронов в атоме (кристалле). Является ненасыщенной и пространственно ненаправленной.
Делокализация валентных электронов в металлах является следствием многоцентрового характера металлической связи. Многоцентровость металлической связи обеспечивает высокую электрическую проводимость и теплопроводность металлов.
Насыщаемость определяется числом валентных орбиталей, участвующих в образовании хим. связи. Количественная характеристика – валентность. Валентность – число связей, которые может образовывать один атом с другими; - определяется числом валентных орбиталей, участвующих в образовании связи по обменному и донорно-акцепторному механизму.
Направленность – связь образуется в направлении максимального перекрывания электронных облаков; - определяет химическое и кристаллохимическое строение вещества (как связаны атомы в кристаллической решетке).
При образовании ковалентной связи электронная плотность концентрируется между взаимодействующими атомами (рисунок из тетради). В случае металлической связи электронная плотность делокализована по всему кристаллу.(рисунок из тетради)
(пример из тетради)
По причине ненасыщенности и ненаправленности металлической связи, металлические тела (кристаллы) являются высоко симметричными и высоко координированными. Подавляющему большинству кристаллических структур металла отвечают 3 типа упаковок атома в кристаллах:
1. ГЦК– гренецентрированна кубическая плотноупокованная структура. Плотность упаковки – 74,05%, координационное число = 12.
2. ГПУ– гексогональная плотноупакованная структура, плотность упаковки = 74,05%, к.ч. = 12.
3. ОЦК– объем центрируется, плотность упаковки = 68,1%, к.ч. = 8.
Металлическая связь не исключает некоторой доли ковалентности. Металлическая связь в чистом виде характерна только для щелочных и щелочно-земельных металлов.
Чистая металлическая связь характеризуется энергией порядка 100/150/200 кДж/моль, в 4 раза слабее ковалентной.
36. Хлор и его свойства. Биологическая роль.
химический элемент VII группы периодической системы Менделеева, атомный номер 17, атомная масса 35,453; относится к семейству галогенов. При нормальных условиях (0 °С, 0,1 Мн/м2) жёлто-зелёный газ с резким раздражающим запахом. Xлор встречается в природе только в виде соединений. В виде иона Cl- он содержится в Мировом океане (1,93%), подземных рассолах и соляных озерах. Число собственных минералов (преимущественно природных хлоридов) 97, главный из них - галит NаCl.
Xлор имеет tкип - 34,05 °С, tпл - 101 °С. Внешняя электронная конфигурация атома Сl Зs2 3р5. В соответствии с этим хлор в соединениях проявляет степени окисления -1, +1, +3, +4, +5, +6 и +7.
Химически хлор очень активен, непосред¬ственно соединяется почти со всеми металлами (с некоторыми только в присутствии влаги или при нагревании) и с неметаллами (кроме углерода, азота, кислорода, инертных газов), образуя соответствующие хлориды, вступает в реакцию со многими соединениями, замещает водород в предельных углеводородах и присоединяется к ненасыщенным соединениям. Хлор вытесняет бром и иод из их соединений с водородом и металлами; из соединений хлора с этими элементами он вытесняется фтором. Щелочные металлы в присутствии следов влаги взаимодействуют с хлором с воспламенением, большинство металлов реагирует с сухим хлором только при нагревании. Фосфор воспламеняется в атмосфере хлора, образуя РСl3, а при дальнейшем хлорировании - РСl5; сера с хлором при нагревании дает S2Сl2, SСl2 и другие SnClm. Мышьяк, сурьма, висмут, стронций, теллур энергично взаимодействуют с хлором. Смесь хлора с водородом горит бесцветным или желто-зеленым пламенем с образованием хлористого водорода (это цепная реакция).
С кислородом хлор образует окислы: Cl2O, ClO2, Cl2O6, Cl2O7, Cl2O8, а также гипохлориты (соли хлорноватистой кислоты), хлориты, хлораты и перхлораты. Все кислородные соединения хлора образуют взрывоопасные смеси с легко окисляющимися веществами. Окислы хлора малостойки и могут самопроизвольно взрываться, гипохлориты при хранении медленно разлагаются, хлораты и перхлораты могут взрываться под влиянием инициаторов.
Xлор в воде гидролизуется, образуя хлорноватистую и соляную кислоты: Сl2 + Н2О = НСlО + НСl. При хлорировании водных растворов щелочей на холоду образуются гипохлориты и хлориды: 2NаОН + Сl2 = NаСlO + NаСl + Н2О, а при нагревании - хлораты. Хлорированием сухой гидроокиси кальция получают хлорную известь. При взаимодействии аммиака с хлором образуется трёххлористый азот. При хлорировании ограниченных соединений хлор либо замещает водород: R—Н + Сl2 = RСl + НСl, либо присоединяется по кратным связям образуя различные хлорсодержащие органические соединения.
Xлор образует с другими галогенами межгалогенные соединения. Фториды СlF, СlF3, СlF5 очень реакционноспособны; например, в атмосфере СlF3 стеклянная вата самовоспламеняется. Известны соединения хлора с кислородом к фтором - оксифториды хлора: СlО3F, СlО2F3, СlOF, СlОF3 и перхлорат фтора FСlO4.
Получение.
способ получения хлора окислением НСl кислородом воздуха в присутствии катализатора, хлор получают электролизом водных растворов хлоридов щелочных металлов.
Биологическая роль:
Xлор - один из биогенных элементов, постоянный компонент тканей растений и животных. Содержание хлора в растениях (много хлора в галофитах) - от тысячных долей процента до целых процентов, у животных - десятые и сотые доли процента. Суточная потребность взрослого человека в хлоре, (2 - 4 г) покрывается за счёт пищевых продуктов. С пищей хлор поступает обычно в избытке в виде хлорида натрия и хлорида калия. Особенно богаты хлором хлеб, мясные и молочные продукты. В организме животных хлор - основное осмотически активное вещество плазмы крови, лимфы, спинномозговой жидкости и некоторых тканей. Играет роль в водно-солевом обмене, способствуя удержанию тканями воды. Регуляция кислотно-щелочного равновесия в тканях осуществляется наряду с другими процессами путём изменения в распределении хлора между кровью и другими тканями, хлор участвует в энергетическом обмене у растений, активируя как окислительное фосфорилирование, так и фотофосфорилирование. Xлор положительно влияет на поглощение корнями кислорода. Xлор необходим для образования кислорода в процессе фотосинтеза изолированными хлоропластами.