
- •2.Стехиометрические законы химии
- •3.Скорость химических реакций
- •4.Зависимость скорости от температуры. Понятие об энергии активации. Катализ.
- •5.Химическое равновесие
- •6.Тепловые эффекты химических реакций. Энтальпия. Закон Гесса.
- •7.Энтропия. Свободная энергия Гиббса. Термодинамический критерий направленности химического процесса.
- •11.Растворение как физико-химический процесс. Химическая теория растворов Менделеева.
- •9.Концентрация растворов. Растворимость, насыщенные и ненасыщенные растворы.
- •10.Идеальные растворы
- •11.Электролиты и неэлектролиты. Электролитическая диссоциация
- •12.Степень электролитической диссоциации
- •13.Ионное произведение воды
- •14.Кислотно-основные свойства веществ.Кислоты, основания и соли с точки зрения теории элд
- •15.Обменные реакции между ионами
- •16.Гидролиз солей
- •17.Электронная теория окисления-восстановления
- •18.Электродные потенциалы.Гальванический элемент
- •19.Электролиз расплавов и растворов
- •20.Электронное строение атома,эектронные формулы и квантовые ячейки.
- •21.Квантовые числа. Принцип Паули, принцип наименьшей энернии, правило Гунда
- •22.Ковалентная связь
- •23.Понятие о гибридизации связей. Кратные связи. Поляризация ковалентной связи. Электроотрицательность
- •24.Метод молекулярных орбиталей
- •25.Ионная связь как одна из составляющих реальной химической связи
- •26.Межмолекулярное взаимодействие
6.Тепловые эффекты химических реакций. Энтальпия. Закон Гесса.
любая химическая реакция сопровождается выделением или поглощением энергии. Чаще всего энергия выделяется или поглощается в виде теплоты (реже - в виде световой или механической энергии). Эту теплоту можно измерить. Результат измерения выражают в килоджоулях (кДж) для одного моля реагента или (реже) для моля продукта реакции. Такая величина называется тепловым эффектом реакции.
Тепловой эффект - количество теплоты, выделившееся или поглощенное химической системой при протекании в ней химической реакции.
Тепловой эффект обозначается символами Q или DH (Q = -DH). Его величина соответствует разности между энергиями исходного и конечного состояний реакции:
DH = Hкон.- Hисх.= Eкон.- Eисх.
Значки (г), (ж) обозначают газообразное и жидкое состояние веществ. Встречаются также обозначения (тв) или (к) - твердое, кристаллическое вещество, (водн) - растворенное в воде вещество и т.д.
Обозначение агрегатного состояния вещества имеет важное значение. Например, в реакции сгорания водорода первоначально образуется вода в виде пара (газообразное состояние), при конденсации которого может выделиться еще некоторое количество энергии. Следовательно, для образования воды в виде жидкости измеренный тепловой эффект реакции будет несколько больше, чем для образования только пара, поскольку при конденсации пара выделится еще порция теплоты.
Используется также частный случай теплового эффекта реакции - теплота сгорания. Из самого названия видно, что теплота сгорания служит для характеристики вещества, применяемого в качестве топлива. Теплоту сгорания относят к 1 молю вещества, являющегося топливом (восстановителем в реакции окисления), например:
C2H2 |
+ |
2,5 O2 |
= |
2 CO2 |
+ |
H2O |
+ |
1300 кДж |
ацетилен |
|
|
|
|
|
|
|
теплота сгорания ацетилена |
Запасенную в молекулах энергию (Е) можно отложить на энергетической шкале. В этом случае тепловой эффект реакции (Е) можно показать графически
Этот закон был открыт Гессом в 1840 г. на основании обобщения множества экспериментальных данных.
7.Энтропия. Свободная энергия Гиббса. Термодинамический критерий направленности химического процесса.
Энтропия— это сокращение доступной энергии вещества в результате передачи энергии. Первый закон термодинамики гласит, что энергию невозможно создать или уничтожить. Следовательно, количество энергии во вселенной всегда такое же, как было и при ее создании. Второй закон термодинамики гласит, чтокоэффициентполезного действия ни одного реального (необратимого) процесса не может быть 100% при преобразовании энергии в работу.
,
где ΔS— изменение энтропии, ΔQ— изменениетеплоты,T— абсолютная термодинамическая температура.
Следовательно, количество энергии для преобразования в работу или теплоту непрерывно уменьшается со временем, так как теплота спонтанно переходит из более теплой области к более холодной
Энергия Гиббса и направление протекания реакции
В химических
процессах одновременно действуют два
противоположных фактора — энтропийный()
иэнтальпийный(
).
Суммарный эффект этих противоположных
факторов в процессах, протекающих при
постоянном давлении и температуре,
определяет изменениеэнергии
Гиббса(
):
Из этого
выражения следует, что ,
то есть некотороеколичество
теплотырасходуется на увеличение
энтропии (
),
эта часть энергии потеряна для совершения
полезнойработы(рассеивается
в окружающую среду в виде тепла), её
часто называютсвязанной
энергией. Другая часть теплоты (
)
может быть использована для совершения
работы, поэтому энергию Гиббса часто
называют также свободной энергией.
Характер
изменения энергии Гиббса позволяет
судить о принципиальной возможности
осуществления процесса. При процесс
может протекать, при
процесс
протекать не может (иными словами, если
энергия Гиббса в исходном состоянии
системы больше, чем в конечном, то процесс
принципиально может протекать, если
наоборот — то не может). Если же
,
то система находится в состояниихимического
равновесия.
Свободная энергия Гиббса(или простоэнергия Гиббса, илипотенциал Гиббса, илитермодинамический потенциалв узком смысле) — это величина, показывающая изменение энергии в ходе химической реакции и дающая таким образом ответ на вопрос о принципиальной возможности протекания химической реакции; этотермодинамический потенциалследующего вида:
Энергию Гиббса можно понимать как полную химическуюэнергиюсистемы (кристалла, жидкости и т. д.)
Понятие энергии Гиббса широко используется в термодинамикеихимии.
Самопроизвольное протекание изобарно-изотермического процесса определяется двумя факторами: энтальпийным, связанным с уменьшением энтальпиисистемы (ΔH), и энтропийным T ΔS, обусловленным увеличением беспорядка в системе вследствие роста еёэнтропии. Разность этих термодинамических факторов является функцией состояния системы, называемой изобарно-изотермическим потенциалом или свободной энергией Гиббса (G, кДж)
Классическим определением энергии Гиббса является выражение
где —внутренняя
энергия,
—давление,
—объём,
—
абсолютнаятемпература,
—энтропия.
Дифференциалэнергии Гиббса для системы с постоянным числом частиц, выраженный в собственных переменных — черездавлениеp итемпературуT:
Для системы с переменным числом частиц этот дифференциал записывается так:
Здесь —химический
потенциал, который можно определить
как энергию, которую необходимо затратить,
чтобы добавить в систему ещё одну
частицу.