- •2.5.2. Определение (конечного) предела функции в точке. Новые формы записи определения непрерывности.
- •2.5.3. Единственность предела.
- •2.5.4. Ограниченность функции, имеющей предел.
- •2.5.5. Порядковые свойства предела.
- •3. Бесконечно малые и бесконечно большие функции. (2.5.7, 2.5.9)
- •2.5.7. Бесконечно малые функции.
- •2.5.9. Бесконечно большие функции.
- •2.5.6. Алгебраические свойства предела.
- •2.5.10. Неопределенности.
- •5.Односторонние пределы функции в точке. I замечательный предел. (2.5.1, 2.5.11, 2.5.12)
- •2.5.11. Односторонние пределы.
- •2.5. Предел функции в точке.
- •2.5.12. Доказательство первого замечательного предела
- •6.Понятие сложной функции. Предел сложной функции. Замена переменной при вычислении пределов. (2.2, 2.5.13)
- •2.2. Сложная функция.
- •2.5.13. Предел сложной функции. Замена переменной при вычислении предела.
- •2.5.16. Свойства функций, непрерывных в точке.
- •2.5.17. Непрерывность элементарных функций.
- •2. 4. Элементарные функции.
- •2.5.14. Предел показательно-степенной функции.
- •8. II замечательный предел. Предел функции на бесконечности. Предел последовательности. (2.5.15, 2.7, 2.8)
- •2.5.15. Второй замечательный предел.
- •2.7. Предел функции при X .
- •2.8. Предел последовательности.
- •2.8.1. Понятие последовательности.
- •2.8.2. Предел последовательности.
- •9.Определение эквивалентных функций. Основная теорема об эквивалентных функциях. Свойства эквивалентных функций. (2.6.2)
- •2.6.1. Функции, сравнимые при X x0.
- •10.Основные соотношения эквивалентности, следующие из 1-го и 2-го замечательных пределов. (2.6.3)
- •X 0 X sin X tg X arcsin X arctg X;
- •11. Сравнение функций при X x0 и при X : порядок, «о»-малое, главная часть. (2.6.4 – 2.6.6, 2.6.7)
- •2.6.4. Порядок функции при X x0.
- •2.6.5. Понятие «о-малой» (по сравнению с другой) функции при X x0.
- •2.6.6. Понятие главной части функции при X x0.
- •2.7. Предел функции при X .
- •12. Свойства функций, непрерывных на отрезке. Нахождение наибольшего и наименьшего значений. Классификация точек разрыва функции. (2.9, 2.11, 4.5)
- •2.9. Свойства функций, непрерывных на отрезке. Теоремы Больцано-Вейерштрасса.
- •2. 11. Классификация точек разрыва функций.
- •13. Определение производной функции в точке. Непрерывность функции, имеющей производную. Определение производной функции. Таблица производных. (3.1, 3.10)
- •3.10. Производные основных элементарных функций.
- •14. Определение дифференцируемой функции. Дифференциал, единственность. Геометрическая интерпретация. Использование в приближенных вычислениях. (3.2 – 3.4)
- •3.2. Дифференцируемые функции. Дифференциал функции в точке.
- •3.3. Уравнение касательной. Геометрический смысл производной и дифференциала.
- •3.4. Использование дифференциала в приближенных вычислениях.
- •15. Алгебраические свойства производной и дифференциала. (3.5)
- •17. Производная обратной функции. Производная параметрически заданной функции. (3.8, 3.9)
- •4.1.2. Теорема Ролля.
- •19. Теорема Лагранжа и ее следствия. (4.1.4)
- •4.1.4. Теорема Лагранжа.
- •20. Теорема Коши и правило Лопиталя. (4.1.3, 4.2)
- •4.1.3. Теорема Коши.
- •4.2. Правило Лопиталя.
- •21. Дифференциалы высших порядков. Формула Тейлора. Приближенные вычисления с заданной точностью (3.15.2, 4.3.2, 4.4.3)
- •3.15.2. Дифференциалы высших порядков.
- •4.3.2. Формула Тейлора для произвольной функции.
- •4.4.3. Приближенное вычисление значения функции в заданной точке с заданной точностью.
- •22. Формулы Маклорена для некоторых элементарных функций (4.3.3)
- •4.3.3. Формулы Маклорена для некоторых элементарных функций.
- •23. Исследование функций в окрестности точки и на интервале с помощью формулы Тейлора. (4.4.2, 4.4.4)
- •4.4.4. Исследование функции на выпуклость и вогнутость на интервале.
- •24. Полное исследование функции. Асимптоты. (4.6)
- •4.6. Полное исследование функции и построение графика.
- •4.6.1. Нахождение асимптот графика функции.
- •4.6.4. Примерный план полного исследования функции.
4.6.4. Примерный план полного исследования функции.
Нахождение области определения и (возможно) области значений функции.
Проверка наличия четности, нечетности, периодичности.
Исследование на непрерывность. Нахождение точек разрыва, их классификация. Вычисление односторонних пределов, если они конечны.
Изучение асимптотического поведения функции в граничных точках области определения и на бесконечности. Нахождение асимптот.
Нахождение интервалов монотонности функции и ее локальных экстремумов с помощью первой производной.
Нахождение интервалов выпуклости и вогнутости функции и точек перегиба графика с помощью второй производной.
Рассмотрение при необходимости дополнительно некоторых точек (нахождение точек пересечения графиком координатных осей, уточнение наклона графика там, где производная равна нулю или разрывна и др.)
Построение эскиза графика функции. Изобразить (пунктиром) асимптоты, нанести точки экстремумов, перегибов, конечных предельных значений в точках разрыва или граничных точках. Соединить кусками графика, приближая их к асимптотам.
Пример.
![]()
D(f) = (0, 1) (1, + ).
Чётность, нечётность, периодичность отсутствуют.
В точках xD(f) функция непрерывна.
Точка разрыва x = 1:
![]()
![]()
Вывод: прямая x = 1 – вертикальная асимптота.
На границе области определения:
(нет асимптоты).
При x
+:
(y
= 0 –
горизонтальная асимптота).
Производная
всегда отрицательна.

.
Числитель меняет знак в точке x = e–2,
знаменатель – в
точке x
= 1.

Делаем вспомогательный рисунок, на котором одновременно учитываем убывание функции и выпуклость или вогнутость графика.

Вычисляем значение y(e –2) = –1/2.
Строим график.

Экстремумов нет, точка перегиба графика (e –2, –1/2).
