Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции / KONSPEKT2.doc
Скачиваний:
179
Добавлен:
27.01.2014
Размер:
543.23 Кб
Скачать

4.2. Основные части теодолита

З р и т е л ь н а я т р у б а. В современных приборах применяются зрительные трубы с внутренней фокусировкой. Труба состоит из окуляра, объектива, фокусирующей линзы в середине трубы, которая перемещается при фокусировании кремальерой, и сетки нитей, установленной в окулярной части трубы. На рис. 4.2 приведен вид сетки нитей, применяемой в теодолитах.

Рис. 4.2. Сетка нитей

Вертикальные нити а, а служат для измерения горизонтальных углов. Двойные нити а называются биссектором, угловая величина которого 1. Биссектор используется при наведении на визирные цели, толщина которых в поле зрения трубы меньше ширины биссектора. В других случаях используется нить а. Горизонтальная нить в служит для измерения вертикальных углов. Горизонтальные штрихи d являются дальномерными нитями и служат для определения расстояний. Сетка нитей может смещаться горизонтально при помощи исправительных винтов 1 и вертикально – винтами 2. Для установки сетки нитей по глазу она может перемещаться относительно окуляра при помощи диоптрийного кольца, установленного на окуляр. Линия, соединяющая центр сетки нитей и центр объектива, называется визирной осью трубы. В теодолитах 3-4 поколений стали устанавливаться зрительные трубы, дающие прямое изображение.

Основной метрологической характеристикой зрительной трубы является увеличение трубы v , которое определяет точность визирования:

mv = 60 / v , (4.2)

чем больше v , тем точнее визирование, (разрешающая способность глаза в угловой мере  60). В теодолитах Т30 v = 18, T15, T5, T2 v = 25 , T1 v=40. Таким образом, в технических и точных теодолитах средняя квадратическая погрешность визирования mv = 2.5 - 3.

У р о в н и. В теодолитах применяются цилиндрические уровни,

рис.4.3.

Рис.4.3. Цилиндрический уровень

Верхняя точка называется нуль-пунктом. От нее вправо и влево нанесены штрихи, расстояния между которыми 2 мм. Угловая величина 2 мм называется ценой деления уровня . Она зависит от радиуса R кривизны внутренней поверхности ампулы. Чем больше R , тем меньше , тем точнее уровень. В теодолитах Т30, Т15 -  = 45, Т5 -  = 30, Т2 -  = 10. Касательная uu1 к внутренней поверхности ампулы в нуль-пункте называется осью уровня. При положении пузырька уровня на середине (концы пузырька уровня симметричны нульпункту) ось уровня uu1 горизонтальна.

О тс ч е т н ы е у с т р о й с т в а. Отсчетные устройства служат для оценки долей деления лимба. Они бывают штриховыми, шкаловыми микроскопами и оптическими микрометрами, рис.4.4.

В теодолитах Т30 наименьшее деление лимба, называемое ценой деления, l = 10 , рис.4.4, а. Отсчет производится по неподвижному штриху алидады с оценкой деления лимба на глаз : 250 24.

В теодолитах 2Т30 (2Т30П) l = 10 , на алидаде шкала в 10 разделена на 12 частей, цена деления шкалы 5 , на глаз оценивается 1/5 деления шкалы: 25012 , рис.4.4, б. В теодолитах 2Т30М, Т15, Т5 l = 10 . Шкала на алидаде в 10 разделена на 60 частей. Цена деления шкалы 1 . Отсчет в теодолитах Т15, Т5 производится до десятых долей минуты: 250 18.5 , рис.4.4, в.

В теодолитах Т2, рис.4.4, г , l = 20 . Оптическим микрометром совмещают диаметрально противоположные штрихи лимба. Приближенно отсчет можно взять по неподвижному штриху алидады с оценкой деления лимба на глаз: 250 52 (для контроля). Полный отсчет: число делений между одноименными штрихами лимба (250 и 2050 ), умноженное на 10 , плюс отсчет по микрометру: 250 52 41.3.

В теодолитах Т30, 2Т30, 2Т30М предельная погрешность отсчета ОТСЧ = 1.5; в теодолитах Т15 – 0.8 ; в теодолитах Т5 – 0.3. Средняя квадратическая погрешность отсчета mОТСЧ = ОТСЧ /3 и определяет в основном точность измерения углов одним приемом в лабораторных условиях.

Рис. 4.4. Схемы отсчетных устройств

а – штриховой микроскоп; б, в – шкаловые микроскопы ; г - оптический микрометр

Э к с ц е н т р и с и т е т а л и д а д ы. В соответствии с принципом измерения горизонтального угла, рис.4.1, центр вращения алидады должен совпадать с центром делений лимба. В практике это условие не выполняется. Несовпадение центра вращения алидады А с центром делений лимба С, рис.4.5, называется эксцентриситетом алидады.

Линейный элемент эксцентриситета е величина не большая. Так в серии теодолитов Т30 может быть е = 0.02 мм. Но при радиусе лимба r = 35 мм погрешность в отсчете х = 2. (Связь между угловым х и линейным е элементами эксцентриситета: x= ( e/r)/, где число минут в одном радиане =3438). При предельной погрешности отсчета ОТСЧ = 1.5 х=2 величина существенная и пренебрегать влиянием эксцентриситета алидады нельзя.

Рис. 4.5. Эксцентриситет алидады

Если брать отсчеты М и N по диаметрально противоположным штрихам алидады, то правильные отсчеты M = M - x , N = N + x , откуда следует что

(M + N)/2 = (M + N)/2 - (4.3)

среднее арифметическое из отсчетов по диаметрально противоположным штрихам алидады свободно от влияния эксцентриситета алидады. Данная схема отсчетов была реализована в старых теодолитах, начиная со времен Герона. В современных оптических теодолитах эта схема реализована в Т2, Т1, Т0.5, см. схему отсчета по рис.4.4.г.

В оптических теодолитах Т30, 2Т30, Т15, Т5 применяется односторонняя система отсчетов, (штрих или шкала на одном конце алидады). Для исключения влияния эксцентриситета алидады измерения ведутся на диаметрально противоположных частях лимба. Измеряют при круге лево (КЛ – положение вертикального круга слева от трубы, если смотреть со стороны окуляра), затем переводят трубу через зенит (поворот трубы на 1800 вокруг своей оси), поворачивают алидаду на 1800 и измеряют при круге право (КП). Средне из измерений при КЛ и КП , согласно (4.3) , исключает погрешность за эксцентриситет алидады.

Измерения при КЛ и КП называются полуприемами, а среднее из них - приемом. Средняя квадратическая погрешность измерения угла одним приемом и является метрологической характеристикой теодолита (Т30 m = 30).

П р и с п о с о б л е н и я д л я ц е н т р и р о в а н и я.Установка центра лимба над вершиной измеряемого угла (центрирование теодолита) и визирной цели в определяемой точке производятся при помощи нитяного отвеса, механического центрира, оптического центрира, рис.4.6.

Рис.4.6. Приспособления для центрирования

а – нитяный отвес; б – механический центрир; в – оптический центрир

Простейший прибор для центрирования – нитяный отвес, рис.4.6, а. Погрешность центрирования в безветренную погоду порядка 5 мм (при ветре порядка 1-2 см).

При определенных условиях в строительстве применяют механический центрир, рис.4.6, б. Острие телескопической штанги 1 совмещают с точкой В местности. Теодолит, скрепленный с верхним концом штанги, перемещают по головке штатива до тех пор, пока пузырек круглого уровня 2 на штанге не установится в нульпункте. Погрешность центрирования 1-2 мм.

Более точное центрирование достигается оптическим центриром, рис.4.6,в. Оптические центриры вмонтированы в подставки теодолитов Т15, Т5, Т2. Алидада теодолита приводится в горизонтальное положение по цилиндрическому уровню. Луч, идущий от точки В, призмой 1 преломляется на 900 и через объектив 2 , сетку нитей 3 и окуляр 4 идет к глазу наблюдателя. После фокусировки в поле зрения центрира видны точка В и крест сетки нитей. Передвигают по головке штатива подставку теодолита до совмещения креста сетки нитей с точкой В. Погрешность центрирования порядка 0.5 мм

В соответствии с применяемым прибором для центрирования и расстоянием d от теодолита до визирной цели можно рассчитать в угловой мере погрешность центрирования mц и установки визирной цели mр , которую называют погрешностью редукции, рис.4.7.

Рис.4.7. Погрешности центрирования и редукции

Центр лимба С не совпадает с точкой В на величину ец в мм, а точка визирования М не совпадает с определяемой точкой М на величину ер в мм. Максимальные погрешности за центрирование и редукцию в угловой мере будут при = 900: xц =(ец / d)  , xр = (ер / d)  ,  = 206265- число секунд в радиане.

Приняв ец = mц и ер = mр в мм в соответствии с применяемыми приспособлениями, получим формулы для расчета средних квадратических погрешностей центрирования и редукции в измеряемом направлении :

mц = (mц / d) , mр = (mр / d)  (4.4)

Пример: длина линии d = 50 м, теодолит и визирная цель центрируются нитяным отвесом в безветренную погоду , mц = mр = 5 мм. Подставим в формулу (4.4) исходные значения:

mц = mр = (5 мм / 50 000 мм) 206 000 = 20.

Если центрирование теодолита и визирной цели производится оптическим центриром, то mц = mр = 2.

По формулам (4.4) рассчитываются максимальные погрешности за центрирование и редукцию в направлении. Угол вычисляется как разность двух направлений. При неблагоприятных условиях (угол близок к 1800) максимальная погрешность в угле будет в два раза больше (в приведенных примерах 40 и 4). В строительстве при заданной точности угловых измерений и фактических расстояний от теодолита до визирных целей рассчитываются способы центрирования. Либо достаточно применить нитяный отвес, или необходим механический центрир, или необходимо вести угловые измерения теодолитом с оптическим центриром (Т15, Т5).

Соседние файлы в папке лекции