Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Otvety_BZhD

.pdf
Скачиваний:
287
Добавлен:
08.06.2016
Размер:
5.39 Mб
Скачать

\

15. Особенности реализации защит от поражения током при питании приборной техники от сети типа IT,TN,TT.

Типы сетей (заземления)

Режимы заземления нейтрали в сетях 0,4 кв

В главе 1.7 нового издания ПУЭ [1] приведены возможные варианты (режимы) заземления нейтрали и открытых проводящих частей1 в сетях 0,4 кВ. Они соответствуют вариантам, указанным в стандарте [2] Международной электротехнической комиссии (МЭК).

Режим заземления нейтрали и открытых проводящих частей обозначается двумя буквами: первая указывает режим заземления нейтрали источника питания (силового трансформатора 6-10/0,4 кВ), вторая 13 открытых проводящих частей. В обозначениях используются начальные буквы французских слов [3,4]: 13 - дефис

Т (terre - земля) 13 заземлено;

N (neutre 13 нейтраль) 13 присоединено к нейтрали источника;

I (isole) 13 изолировано.

МЭК и ПУЭ предусматривают три режима заземления нейтрали и открытых проводящих частей:

TN 13 нейтраль источника глухо заземлена, корпусы электрооборудования присоединены к нейтральному проводу;

ТТ 13 нейтраль источника и корпусы электрооборудования глухо заземлены (заземления могут быть раздельными);

IT 13 нейтраль источника изолирована или заземлена через приборы или устройства, имеющие большое сопротивление, корпуса электрооборудования глухо заземлены.

Режим TN может быть трех видов:

TN-C - нулевые рабочий и защитный проводники объединены (С 13 первая буква англ. слова combined 13 объединенный) на всем протяжении. Объединенный нулевой проводник называется PEN по первым буквам англ. слов protective earth neutral 13 защитная земля, нейтраль;

TN-S 13 нулевой рабочий проводник N и нулевой защитный проводник PE разделены (S 13 первая буква англ. слова separated 13 раздельный);

TN-C-S 13 нулевые рабочий и защитный проводники объединены на головных участках сети в проводник PEN, а далее разделены на проводники N и PE.

1Открытая проводящая часть 13 доступная прикосновению проводящая часть электроустановки, нормально не находящаяся под напряжением, но которая может оказаться под напряжением при повреждении основной изоляции. То есть к открытым проводящим частям относятся металлические корпуса электрооборудования.

2Косвенное прикосновение 13 электрический контакт людей и животных с открытыми проводящими частями, оказавшимися под напряжением при повреждении изоляции. То есть это прикосновение к металлическому корпусу электрооборудования при пробое изоляции на корпус.

Сравним возможные режимы заземления нейтрали и открытых проводящих частей в сетях 0,4 кВ 13 отметим преимущества и существенные недостатки. Основными критериями для сравнения являются:

электробезопасность (защита от поражения людей электрическим током);

пожаробезопасность (вероятность возникновения пожаров при коротких замыканиях);

бесперебойность электроснабжения потребителей;

перенапряжения и защита изоляции;

электромагнитная совместимость (в нормальном режиме работы и при коротких замыканиях);

повреждения электрооборудования при однофазных коротких замыканиях;

проектирование и эксплуатация сети.

СЕТЬ TN-C

Функции нейтрального проводника и провода защитного заземления объединяются во всей сети в одном проводнике PEN.

До последнего времени данная система заземления была наиболее распространенной в России. Основным и очень большим недостатком данного типа сетей является невозможность использования в них УЗО (устройств защитного отключения).

Сети 0,4 кВ с таким режимом заземления нейтрали и открытых проводящих частей (занулением) до последнего времени были широко распространены в России. Электробезопасность в сети TN-C при косвенном прикосновении2 обеспечивается отключением возникших однофазных замыканий на корпус с помощью предохранителей или автоматических выключателей. Режим TN-C был принят в качестве главенствующего в то

время, когда основными аппаратами защиты от замыканий на корпус были предохранители и автоматические выключатели. Характеристики срабатывания этих аппаратов защиты в свое время определялись особенностями защищаемых воздушных линий (ВЛ) и кабельных линий (КЛ), электродвигателей и других нагрузок. Обеспечение электробезопасности было второстепенной задачей. При относительно низких значениях токов однофазного КЗ (удаленность нагрузки от источника, малое сечение провода) время отключения существенно возрастает. При этом электропоражение человека, прикоснувшегося к металлическому корпусу, весьма вероятно. Например, для обеспечения электробезопасности отключение КЗ на корпус в сети 220 В должно выполняться за время не более 0,2 с [2]. Но такое время отключения предохранители и автоматические выключатели способны обеспечить только при кратностях токов КЗ по отношению к номинальному току на уровне 6-10. Таким образом, в сети TN-C существует проблема обеспечения безопасности при косвенном прикосновении из-за невозможности обеспечения быстрого отключения. Кроме того, в сети

TN-C при однофазном КЗ на корпус электроприемника возникает вынос потенциала по нулевому проводу на корпуса неповрежденного оборудования, в том числе отключенного и выведенного в ремонт. Это увеличивает вероятность поражения людей, контактирующих с электрооборудованием сети. Вынос потенциала на все зануленные корпуса возникает и при однофазном КЗ на питающей линии (например, обрыв фазного провода ВЛ 0,4 кВ с падением на землю) через малое сопротивление (по сравнению с сопротивлением контура заземления подстанции 6-10/0,4 кВ). При этом на время действия защиты на нулевом проводе и присоединенных к нему корпусах возникает напряжение, близкое к фазному. Особую опасность в сети TN-C представляет обрыв (отгорание) нулевого провода.

Вэтом случае все присоединенные за точкой обрыва металлические зануленные корпуса электроприемников окажутся под фазным напряжением.

Самым большим недостатком сетей TN-C является неработоспособность в них устройств защитного отключения (УЗО) или residual current devices (RCD) по западной классификации.

Пожаробезопасность сетей TN-C низкая. При однофазных КЗ в этих сетях возникают значительные токи (килоамперы), которые могут вызывать возгорание. Ситуация осложняется возможностью возникновения однофазных замыканий через значительное переходное сопротивление, когда ток замыкания относительно невелик и защиты не срабатывают либо срабатывают со значительной выдержкой времени.

Бесперебойность электроснабжения3 в сетях TN-C при однофазных замыканиях не обеспечивается, так как замыкания сопровождаются значительным током и требуется отключение присоединения.

Впроцессе однофазного КЗ в сетях TN-C возникает повышение напряжения (перенапряжения) на неповрежденных фазах примерно на 40%. Сети TN-C характеризуются наличием электромагнитных возмущений. Это связано с тем, что даже при нормальных условиях работы на нулевом проводнике при протекании рабочего тока возникает падение напряжения. Соответственно между разными точками нулевого провода имеется разность потенциалов. Это вызывает протекание токов в проводящих частях зданий, оболочках кабелей и экранах телекоммуникационных кабелей и соответственно электромагнитные помехи. Электромагнитные возмущения существенно усиливаются при возникновении однофазных КЗ со значительным током, протекающим в нулевом проводе.

Значительный ток однофазных КЗ в сетях TN-C вызывает существенные разрушения электрооборудования. Например, прожигание и выплавление стали статоров электродвигателей. На стадии проектирования и настройки защит в сети TN-C необходимо знать сопротивления всех элементов сети, в том числе и сопротивления нулевой последовательности для точного расчета токов однофазных КЗ. То есть необходимы расчеты или измерения сопротивления петли фаза-нуль для всех присоединений. Любое существенное изменение в сети (например, увеличение длины присоединения) требует проверки условий защиты.

СЕТЬ TN-S

Нейтральный проводник и провод защитного заземления разделяются во всей сети.

Такие сети обладают хорошей пожаро- и электробезопасностью, а также лучшей электромагнитной обстановкой по сравнению с четырехпроводными сетями.

Сети 0,4 кВ с таким режимом заземления нейтрали и открытых проводящих частей называются пятипроводными. В них нулевой рабочий и нулевой защитный проводники разделены. Само по себе использование сети TN-S не обеспечивает электробезопасность при косвенном прикосновении, так как при пробое изоляции на корпусе, как и в сети TN-C, возникает опасный потенциал. Однако в сетях TN-S возможно использование УЗО. При наличии этих устройств уровень электробезопасности в сети TN-S существенно выше, чем в

сети TN-С. При пробое изоляции в сети TN-S также возникает вынос потенциала на корпуса других электроприемников, связанных проводником PE. Однако быстрое действие УЗО в этом случае обеспечивает безопасность. В отличие от сетей TN-С обрыв нулевого рабочего проводника в сети TN-S не влечет за собой появление фазного напряжения на корпусах всех связанных данной линией питания электроприемников за точкой разрыва.

Пожаробезопасность сетей TN-S при применении УЗО в сравнении с сетями TN-С существенно выше. УЗО чувствительны к развивающимся дефектам изоляции и предотвращают возникновение значительных токов однофазных КЗ.

В отношении бесперебойности электроснабжения и возникновения перенапряжений, сети TN-S не отличаются от сетей TN-С. Электромагнитная обстановка в сетях TN-S в нормальном режиме существенно лучше, чем в сетях TN-С. Это связано с тем, что нулевой рабочий проводник изолирован и отсутствует ответвление токов в сторонние проводящие пути. При возникновении однофазного КЗ создаются такие же электромагнитные возмущения, как и в сетях TN-С.

Наличие в сетях TN-S устройств УЗО существенно снижает объем повреждений при возникновении однофазных КЗ по сравнению с сетями TN-С. Это объясняется тем, что УЗО ликвидирует повреждение в его начальной стадии.

В отношении проектирования, настройки защит и обслуживания, сети TN-S не имеют каких-либо преимуществ по сравнению с сетями TN-С. Отмечу, что сети TN-S более дорогие в сравнении с сетями TN-С из-за наличия пятого провода, а также УЗО.

СЕТЬ TN-С-S

Это комбинация рассмотренных выше двух типов сетей. Для этой сети будут справедливы все преимущества и недостатки, указанные выше.

СЕТЬ TТ

Одна точка заземляется напрямую (рабочая земля). Открытые проводящие части электрической установки соединяются с линиями заземления отдельно от рабочей земли.

В данных сетях высокая электробезопасность обеспечивается обязательным использованием УЗО. Пожаробезопасность таких сетей гораздо выше, чем в сетях

TN-C.

Особенностью данного типа сетей 0,4 кВ является то, что открытые проводящие части электроприемников присоединены к заземлению, которое обычно независимо от заземления питающей подстанции 6 1310/0,4 кВ. Электробезопасность в этих сетях обеспечивается использованием УЗО в обязательном порядке. Само по себе использование режима

ТТне обеспечивает безопасности при косвенном прикосновении. Если сопротивление местного заземлителя, к которому присоединены открытые проводящие части, равно сопротивлению заземления питающей подстанции 6(10)/0,4 кВ и возникает замыкание на корпус, то напряжение прикосновения составит половину фазного напряжения (110 В для сети 220 В). Такое напряжение опасно, и необходимо немедленное отключение поврежденного присоединения. Но отключение не может быть обеспечено автоматическими выключателями и предохранителями за безопасное для прикоснувшегося человека время из-за малой величины тока однофазного замыкания. Например, если принять, что сопротивления заземления питающей подстанции 6(10)/0,4 кВ и местного заземлителя равны 0,5 Ома, и пренебречь сопротивлениями силового трансформатора и кабеля, при фазном напряжении 220 В ток однофазного замыкания на корпус в сети ТТ составит всего 220 А. С учетом всех сопротивлений в цепи замыкания ток будет еще меньше.

Пожаробезопасность сетей TТ в сравнении с сетями TN-С существенно выше. Это связано со сравнительно малой величиной тока однофазного замыкания и с применением УЗО, без которых сети ТТ вообще эксплуатироваться не могут.

Бесперебойность электроснабжения3 в сетях TТ при однофазных замыканиях не обеспечивается, так как требуется отключение присоединения по условиям безопасности.

При возникновении однофазного замыкания на землю в сети ТТ напряжение на неповрежденных фазах относительно земли повышается, что связано с появлением напряжения на нейтрали питающего трансформатора 6(10)/0,4 кВ. Если принять сопротивления, указанные выше, то напряжение на нейтрали составит половину фазного. Такое повышение напряжения не опасно для изоляции, так как однофазное замыкание достаточно быстро ликвидируется действием УЗО, причем в большинстве случаев до своего полного развития и достижения током максимума.

В системе ТТ нескольких корпусов электроприемников обычно объединены одним защитным проводником РЕ и присоединены к общему заземлителю, отдельному, как уже сказано, от заземлителя питающей подстанции. Выполнять отдельный заземлитель в сети

ТТдля каждого электроприемника нецелесообразно по экономическим соображениям. В нормальном режиме по защитному проводнику в системе ТТ не протекает ток и соответственно между корпусами отдельных электроприемников нет разности потенциалов. То есть в нормальном режиме электромагнитные возмущения (разность потенциалов между корпусами, протекание токов по конструкциям зданий и оболочкам кабелей) отсутствуют. При возникновении однофазного замыкания ток относительно невелик, при его протекании падение напряжения на защитном проводнике невелико, длительность протекания тока мала. Соответственно возникающие при этом возмущения также невелики. Таким образом, с позиций электромагнитных возмущений сеть ТТ имеет преимущество по сравнению с сетями TN-С в нормальном режиме работы и с сетями TN-С, TN-S, TN-С-S в режиме однофазного замыкания.

Объем повреждений оборудования в сетях ТТ при возникновении однофазных КЗ невелик, что связано с малой величиной тока в сравнении с сетями TN-С, TN-S, TN-С-S и с использованием УЗО, которые обеспечивают отключение до полного развития повреждения изоляции.

С точки зрения проектирования, сети ТТ имеют существенное преимущество по сравнению с сетями TN. Использование в сетях ТТ УЗО устраняет проблемы, связанные с ограничением длины линий, необходимостью знать полное сопротивление петли КЗ. Сеть может быть расширена или изменена без повторного расчета токов КЗ или замера сопротивления петли тока КЗ. Учитывая, что сам по себе ток однофазного КЗ в сетях ТТ меньше, чем в сетях TN-S, TN-С-S, сечение защитного проводника РЕ в сети ТТ может быть меньше.

СЕТЬ IT

Непосредственное соединение между активными проводниками и заземленными частями отсутствует. Открытые проводящие части электрической установки заземляются.

Такие сети обладают самыми высокими электро- и пожаробезопасностью по сравнению со всеми рассмотренными вариантами. К тому же сети IT отличаются высокой бесперебойностью электроснабжения потребителей. Электромагнитные возмущения в IT сетях также малы. Применение таких сетей оправдано в особых случаях, например, в медицинских учреждениях.

Нейтральная точка питающего трансформатора 6(10)/0,4 кВ такой сети изолирована от земли или заземлена через значительное сопротивление (сотни Ом 13 несколько кОм). Защитный проводник в таких сетях отделен от нейтрального.

Электробезопасность при однофазном замыкании на корпус в этих сетях наиболее высокая из всех рассмотренных. Это связано с малой величиной тока однофазного замыкания (единицы ампер). При таком токе замыкания напряжение прикосновения крайне невелико и отсутствует необходимость немедленного отключения возникшего повреждения. Кроме того, в сети IT безопасность может быть улучшена за счет применения УЗО.

Пожаробезопасность сетей IT самая высокая в сравнении с сетями TN-С, TN-S, TN-С-S, ТТ. Это объясняется наименьшей величиной тока однофазного замыкания (единицы ампер) и малой вероятностью возгорания.

Сети IT отличаются высокой бесперебойностью электроснабжения потребителей. Возникновение однофазного замыкания не требует немедленного отключения.

При возникновении однофазного замыкания на землю в сети IT напряжение на неповрежденных фазах увеличивается в 1,73 раза. В сети IT с изолированной нейтралью (без резистивного заземления) возможно возникновение дуговых перенапряжений высокой кратности.

Электромагнитные возмущения в сетях IT невелики, поскольку ток однофазного замыкания мал и не создает значительных падений напряжения на защитном проводнике.

Повреждения оборудования при возникновении однофазного замыкания в сетях IT очень малы. Для эксплуатации сети IT необходим квалифицированный персонал, способный быстро находить и устранять возникшее замыкание. Для определения поврежденного присоединения необходимо специальное устройство (в западных странах применяется генератор тока с частотой, отличной от промышленной, включаемый в нейтраль). Сети IT имеют ограничение на расширение сети, так как новые присоединения увеличивают ток однофазного замыкания.

16. Возможные источники возгарания в изделиях приборной техники Повышение температуры (перегрев) электронных компонентов вследствие длительной работы, короткие замыкания в цепях питания,

искровые и дуговые разряды. Описанные выше явления являются следствием: увеличения переходного сопротивления,

17. Основные характеристики пожарной опасности материалов, используемых в изделиях приборной техники Все материалы приборной техники хаактеризуются по степени…

18. Нормативные требования по пожаробезопасности электронных изделий

Для элементов, узлов и блоков дБ указаны вероятностные данные их отказа при выполнении защитных функций. Числовые значения дБ приведены в ТУ на ЭУ. При нормальной и аварийной работе ЭУ ни один из элементов не должени иметь температуру выше допустимых значений по ГОСТ 12.2.006-87.

Элементы ЭУ, нагревающиеся до опасных температур, дБ защищены от перегрева термовыключателями, термореле и др. Цепи питания должны иметь защиту от токов перегрузки и кз.(плавкие предохранители.) Для ограничения распространения горения должны применяться противопожарные кожухи. Детали из немет мат-в, используемых в качестве наружных частей, частей, удерживающих токопроводники, дБ теплостойкими. Соединительные детали мд токовед частями ЭИ, выполненные из изоляц- х материалов, дБ стойкими к образованию токопроводящих мостиков. Ограничиваются предельно допустимые значения мощности рассеяния комплектующих элементов, вход в цепь авар режима при условии несрабатывания защиты. Жгуты монтажных проводов дБ стойкими к воспламенению и распространению горения при воздействии стандартного игольчатого пламени.

19. Основные конструкторские решения по обеспечению пожаробезопасности

20. Учет особенностей эксплуатации при выборе мер обеспечения пожаробезопасности изделия Требования пожарной безопасности к электроустановкам:

1.Монтаж и эксплуатацию электроустановок и электротехнических изделий необходимо осуществлять в соответствии с требованиями нормативных документов по пожарной безопасности (в том числе Правил устройства электроустановок (ПУЭ), Правилами технической эксплуатации электроустановок потребителей (ПЭЭП), Правилами техники безопасности при эксплуатации электроустановок потребителей (ПТБ)).

2.Электроустановки и бытовые электроприборы в помещениях, в которых по окончании рабочего времени отсутствует дежурный персонал, должны быть обесточены. Под напряжением должны оставаться дежурное освещение, установки пожаротушения и противопожарного водоснабжения. пожарная и охранно-пожарная сигнализация. Другие электроустановки и электротехнические изделия могут оставаться под напряжением, если это обусловлено их функциональным назначением и (или) предусмотрено требованиями инструкции по эксплуатации.

3.Hе допускается прокладка и эксплуатация воздушных линий электропередачи (в том числе временных и проложенных кабелем) над горючими кровлями, навесами, а также открытыми складами горючих веществ, материалов и изделий.

4.При эксплуатации электрических сетей зданий и сооружений с периодичностью не реже одного раза в три года должен проводиться замер сопротивления изоляции токоведущих частей силового .и осветительного оборудования, результаты замеры оформляются соответствующим актом (протоколом).

5.Светильники общего пользования жилых домов должны подвергаться периодическому осмотру и очистке от пыли не реже 2- х раз в год;

6.Выключатель электроэнергии чердачных и подвальных помещений должен располагаться за их пределами.

7.Объемные самосветящиеся знаки пожарной безопасности с автономным питанием и от электросети, используемые на путях эвакуации (в том числе световые указатели "Эвакуационный выход", "Дверь эвакуационного выхода"), должны постоянно находиться в исправном состоянии.

При эксплуатации действующих электроустановок запрещается:

-использовать приемники электрической энергии (электроприемники) в условиях, не соответствующих требованиям инструкций предприятий-изготовителей или имеющие неисправности, которые в соответствии с инструкцией по эксплуатации могут привести к пожару, а также эксплуатировать электропровода и кабели с поврежденной или потерявшей защитные свойства изоляцией;

-пользоваться поврежденными розетками, рубильниками, другими электроустановочными изделиями;

-соединять жилы проводов скруткой;

-обертывать электролампы бумагой. тканью и другими горючими материалами, а также эксплуатировать светильники со снятыми колпаками (рассеивателями), предусмотренными конструкцией светильника;

-эксплуатировать электронагревательные приборы при отсутствии или неисправности терморегуляторов, предусмотренных конструкцией;

-оставлять без присмотра включенные в электросеть электроустановки и электротехнические изделия, если это не обусловлено их функциональным назначением и (или) предусмотрено требованиями инструкций по эксплуатации;

-применять нестандартные (самодельные) электронагревательные приборы, использовать некалиброванные плавкие вставки или другие самодельные аппараты защиты от перегрузки и короткого замыкания;

-располагать светильники на расстоянии менее 0,5м от горючих конструкций и материалов;

-устраивать кладовки и мастерские в помещениях распределительных устройств и щитов;

-размещать (складировать) у электрощитов. электродвигателей и пусковой аппаратуры горючие (в том числе легковоспламеняющиеся) вещества и материалы.

21. Требования к уровню взрывозащиты в зависимости от условий эксплуатации изделий

22. Виды взрывозащиты и методы ее обеспечения

23. Взрывозащита вида “искробезопасная цепь”

24. Взрывозащита вида “d”

Подразумевает т.н. сдерживание взрыва, т.е. ограничение области взрыва некоторой зоной т.о., что распространения взрыва в окружающую атмосферу не происходит.

25. Проблема ЭМС

Электромагнитная совместимость (ЭМС) технических средств — способность технических средств одновременно функционировать в реальных условиях эксплуатации с требуемым качеством при воздействии на них непреднамеренных электромагнитных помех и не создавать недопустимых электромагнитных помех другим техническим средствам.

В реальных условиях в месте расположения электрооборудования действует большое число различного рода излучений, учёт которых возможен при помощи методов теории вероятности и математической статистики. Обеспечение нормальной работы совместно работающих технических средств является целью ЭМС как научной проблемы. Предметом же изучения можно считать выявление закономерностей мешающего взаимодействия совместно работающих технических средств, на базе которых формируются рекомендации для достижения цели.

26. Классификация и характеристики ЭМО

КЛАССИФИКАЦИЯ ЭЛЕКТРОМАГНИТНОЙ ОБСТАНОВКИ ОКРУЖАЮЩЕЙ СРЕДЫ Электромагнитная обстановка окружающей среды представляет собой многовариантную систему с широким разбросом пара-

метров, количества, вида и интенсивности проявляющихся в данном месте электромагнитных воздействий. Экономически нецелесообразно выполнять любое устройство или автоматическую и автоматизированную систему технологического управления электроэнергетическими объектами абсолютно стойкими к самым жестким электромагнитным воздействиям. Требуется классификация электромагнитных условий окружающей среды по видам и уровням воздействия, в соответствии с которой можно сформулировать требования, предъявляемые к различным устройствам в отношении электромагнитной совместимости.

Приведем характеристики классов окружающей среды.

Электромагнитную обстановку принято характеризовать как легкую (класс 1), средней жесткости (класс 2), жесткую (класс 3) и крайне жесткую (класс 4). В корреляции с электромагнитной обстановкой устанавливают степени жесткости испытаний технических средств на электромагнитную совместимость.

^ Класс 1. Легкая электромагнитная обстановка:

осуществлены оптимизированные и скоординированные мероприятия по подавлению помех, защите от перенапряжений во всех цепях;

электропитание отдельных элементов устройства резервировано, силовые и сигнальные цепи выполнены раздельно;

выполнение заземлений, прокладка кабелей, экранирование произведено в соответствии с требованиями электромагнитной совместимости;

климатические условия контролируются и приняты специальные меры по предотвращению разрядов статического электричества.

^ Класс 2. Электромагнитная обстановка средней жесткости:

цепи питания и управления частично оборудованы помехозащитными устройствами и устройствами для защиты от перенапряжений;

отсутствуют силовые выключатели, устройства для отключения конденсаторов, катушек индуктивностей;

электропитание устройств осуществляется от сетевых стабилизаторов;

имеется тщательно выполненное заземляющее устройство;

токовые контуры разделены гальванически;

предусмотрено регулирование влажности воздуха, материалы, способные электризоваться трением, отсутствуют;

применение радиопереговорных устройств, передатчиков, запрещено.

Эта обстановка типична для диспетчерских помещений индустриальных предприятий, электростанций и подстанций.

^ Класс 3. Жесткая электромагнитная обстановка:

защита от перенапряжений в силовых цепях и цепях управления не предусмотрена;

повторного зажигания дуги в коммутационных аппаратах не происходит;

имеется контур заземления;

провода электропитания, управления и коммутационных цепей недостаточно разделены;

кабели линий передачи данных, сигнализации, управления разделены;

относительная влажность воздуха поддерживается в определенных пределах, нет материалов, электризуемых трением;

использование переносных радиопереговорных устройств ограничено (установлены ограничения приближения к приборам на определенное расстояние).

Эта обстановка характерна для индустриальных цехов, электростанций, релейных помещений подстанций.

^ Класс 4. Крайне жесткая электромагнитная обстановка:

защита в цепях управления и силовых контурах от перенапряжений отсутствует;

имеются коммутационные устройства, в аппаратах которых возможно повторное зажигание дуги;

существует неопределенность в выполнении заземляющего устройства;

нет пространственного разделения проводов электропитания, управления и коммутационных цепей;

управление и сигнализация осуществляются по общим кабелям;

допустимы любая влажность воздуха и наличие электризуемых трением материалов;

возможно неограниченное использование переносных переговорных устройств;

в непосредственной близости могут находиться мощные радиопередатчики;

вблизи могут находиться дуговые технологические устройства (электропечи, сварочные машины и т.п.).

Типичными для этого класса являются территории вблизи промышленных предприятий, электростанций, открытых распределительных устройств среднего и высокого напряжений, где не предусматриваются специальные меры по обеспечению электромагнитной совместимости.

27. Критерии качества функционирования приборной техники (см.стр 75 метод указ.)

28. Основные виды и характеристики внешних излучаемых - индуктив помех (см.29)

29. Основные виды и характеристики внешних кондуктивных помех В качестве электромагнитной помехи (ЭМП) может фигурировать практически любое электромагнитное явление в широком

диапазоне частот. Прежде чем переходить к рассмотрению влияния ЭМП на электронную аппаратуру, попытаемся ввести некоторую классификацию ЭМП.

Взависимости от источника ЭМП можно разделить на естественные и искусственные. Наиболее распространенной естественной ЭМП является электромагнитный импульс при ударе молнии. Искусственные помехи можно разделить на создаваемые функциональными источниками и создаваемые нефункциональными источниками. Функциональным источник помехи будем называть в случае, если для него самого создаваемая ЭМП является полезным сигналом. К таким источникам относятся, прежде всего, передающие устройства радиосвязи, а также аппаратура, использующая цепи питания для передачи информации. Нефункциональными будем называть источники, которые создают ЭМП в качестве побочного эффекта в процессе работы. К ним можно отнести любые проводные коммуникации, создающие электромагнитные поля, коммутационные устройства, импульсные блоки питания аппаратуры и т.п. Электростатический разряд с тела человека также может рассматриваться как создаваемый нефункциональным источником ЭМП. Принципиальное различие между функциональными и нефункциональными источниками состоит в том, что для вторых уровень ЭМП часто можно снизить путем пересмотра конструкции источника, в то время как для функциональных ЭМП такой путь обычно исключается.

Взависимости от среды распространения ЭМП могут разделяться на индуктивные и кондуктивные. Индуктивными называют ЭМП, распространяющиеся в виде электромагнитных полей в непроводящих средах. Кондуктивные ЭМП представляют собой токи, текущие по проводящим конструкциям и земле.

Деление помех на индуктивные и кондуктивные является, строго говоря, условным. В реальности протекает единый электромагнитный процесс, затрагивающий проводящую и непроводящую среду. В ходе распространения многие помехи могут превращаться из индуктивных в кондуктивные и наоборот. Так, переменное электромагнитное поле способно создавать наводки в кабелях, которые далее распространяются как классические кондуктивные помехи. С другой стороны, токи в кабелях и цепях заземления сами создают электромагнитные поля, т.е. индуктивные помехи.

Условность деления помех на индуктивные и кондуктивные наглядно проявляется, например, в ходе анализа пути проникновения высокочастотных помех внутрь электронной аппаратуры. Часто выясняется, что реальный путь проникновения помехи представляет собой комбинацию металлических проводников и «дорожек» на платах аппаратуры («кондуктивные» участки) и паразитных емкостных и индуктивных связей («индуктивные» участки). В результате помеха достигает высокочувствительных цифровых контуров аппаратуры, минуя защитные элементы типа фильтров и варисторов, установленные в расчете на чисто кондуктивный характер помехи.

Деление помех на индуктивные и кондуктивные можно считать относительно строгим лишь в низкочастотной (до десятков кГц) области, когда емкостные и индуктивные связи обычно малы. Однако и здесь есть исключения - например, строгий анализ растекания тока через сложный заземлитель в землю требует учета как гальванической, так и электромагнитной составляющей единого процесса.

Кондуктивные помехи в цепях, имеющих более одного проводника, принято также делить на помехи «провод - земля» (синонимы - несимметричные, общего вида, Common Mode) и «провод-провод» (симметричные, дифференциального вида, Differential Mode). В первом случае («провод-земля») напряжение помехи приложено, как следует из названия, между каждым из проводников цепи и землей. Во втором - между различными проводниками одной цепи (см. рис. 1). Обычно самыми опасными для аппаратуры являются помехи «провод-провод», поскольку они оказываются приложенными так же, как и полезный сигнал (рис. 1 б)). Реальные помехи обычно представляют собой комбинацию помех «провод-провод» и «провод-земля». Нужно учитывать, что несимметрия внешних цепей передачи сигналов и входных цепей аппаратуры может вызывать преобразование помехи «провод-земля» в помеху «провод-

провод». Это легко понять, рассматривая упрощенную схему на рис. 2: несимметрия внешних цепей (Zl1≠Zl2) и входных цепей аппаратуры-приемника (Zi1≠Zi2) приводит к появлению помехи «провод-провод» величиной Ul = (Zi1/ Zl1 - Zi2/Zl2)Uc. В данном примере упрощение заключалось в том, что внутреннее сопротивление приемника в режиме «провод-провод» принято равным бесконечности (т.е., в качестве измерителя полезного сигнала включен идеальный вольтметр).

Применение внешних цепей с высокой степенью симметрии (т.е. с Zl1 ≈Zl2, например, типа «витая пара»), позволяет обеспечить низкий уровень преобразования помех «провод-земля» в помехи «провод-провод», но лишь при условии высокой симметрии

входных цепей аппаратуры (Zi1 ≈ Zi2).

Следующие два способа классификации помех основываются на их спектральных характеристиках. Во-первых, ЭМП делятся на узкополосные и широкополосные. К первым обычно относятся помехи от систем связи на несущей частоте, систем питания переменным током и т.п. Их отличительной особенностью является то, что характер изменения помехи во времени является синусоидальным или близок к нему. При этом спектр помехи близок к линейчатому (максимальный уровень - на основной частоте, пики меньшего уровня - на частотах гармоник).

Широкополосные помехи имеют существенно несинусоидальный характер и обычно проявляются в виде либо отдельных импульсов, либо их последовательности. Для периодических широкополосных сигналов спектр состоит из большого набора пиков на частотах, кратных частоте основного сигнала. Для апериодических помех спектр является непрерывным и описывается спектральной плотностью. Типичными широкополосными помехами являются:

· шум, создаваемый в сети питания аппаратуры при работе импульсного блока питания; · молниевые импульсы; · импульсы, создаваемые при коммутационных операциях; · ЭСР.

Другой спектральной характеристикой является область частот, в которой лежит основная часть спектра помехи. Условно принято делить все помехи на низкочастотные и высокочастотные. К первым обычно относят помехи в диапазоне 0 - 9 кГц. В большинстве случаев они создаются силовыми электроустановками и линиями. Высокочастотные узкополосные помехи (с частотой выше 9 кГц) обычно создаются различными системами связи. Высокочастотными являются все распространенные типы импульсных помех. Иногда также вводят понятия радиочастотной помехи (диапазон - от 150 кГц до 1,2 ГГц) и СВЧ-помехи (порядка нескольких ГГц).

Приведенная классификация не претендует ни на строгость, ни на полноту. Тем не менее, она позволяет ввести понятия, которые понадобятся нам в дальнейшем. Эта же классификация широко используется инженерами, работающими в области ЭМС.

30. Основные источники помех, создаваемые изделиями приборной техники (см метод указ)

31. Элементы ЭУ, наиболее чувствительные к электромагнитным помехам

32. Помехоустойчивость аналоговых цепей

33. Помехоустойчивость цифровых цепей