- •Министерство образования и науки Российской федерации
- •Часть I. Механика
- •Тема 1. Кинематика поступательного и вращательного движения. Кинематика поступательного движения
- •Кинематика вращательного движения
- •Тема 2. Динамика поступательного движения. Законы Ньютона
- •Тема 3. Работа. Кинетическая, потенциальная и полная энергия
- •Тема 4. Момент инерции твердого тела. Теорема Штейнера
- •Тема 5. Кинетическая энергия и работа вращательного движения Уравнение динамики вращательного движения твердого тела
- •Тема 6. Момент импульса. Закон сохранения момента импульса
- •Тема 7. Механические колебания. Пружинный маятник
- •Тема 8. Гармонические колебания физического маятника
- •Тема 9. Механические волны
- •Тема 10. Механика жидкости. Уравнение Бернулли
- •Часть II. Молекулярная физика и термодинамика
- •Тема 1. Уравнение состояния идеального газа.
- •Тема 2. Термодинамические процессы. Изопроцессы.
- •Тема 3. Основное уравнение молекулярно-кинетической теории идеального газа.
- •Тема 4. Распределение молекул идеального газа по скоростям.
- •Тема 5. Барометрическая формула. Распределение Больцмана.
- •Тема 6. Явления переноса (диффузия, теплопроводность, вязкость).
- •Тема 7. Первое начало термодинамики. Внутренняя энергия. Работа. Применение первого начала термодинамики к изопроцессам.
- •Тема 8. Теплоемкость газа при изопроцессах. Уравнение Майера.
- •Тема 9. Адиабатический процесс.
- •Тема 10. Обратимый и необратимый процессы. Круговой процесс. Тепловая машина и цикл Карно.
- •Часть III. Электричество и магнетизм
- •Тема 2. Работа сил электростатического поля. Потенциал
- •Циркуляцией вектора напряженности электростатического поляпо произвольному замкнутому контуру l называется интеграл
- •Связь между напряженностью и потенциалом электростатического поля
- •Тема 4. Действие магнитного поля на проводник с током (закон Ампера) и на движущийся заряд (сила Лоренца)
- •Тема. 5. Магнитный поток. Теорема Гаусса для магнитного поля
- •Теорема Гаусса для магнитного поля
- •Тема. 6. Явление электромагнитной индукции. Закон Фарадея
- •Тема 7. Циркуляция вектора магнитной индукции
- •Тема 8. Уравнения Максвелла для стационарных электрического и магнитного полей
- •I.; II. ;
- •III.; IV. .
- •Тема 8. Уравнения Максвелла для электромагнитного поля
- •I.; II.;
- •Тема 9. Электромагнитные колебания в колебательном контуре
- •Тема 10. Электромагнитные волны
- •Часть IV.Волновая и квантовая оптика т ема 1. Волновая теория света. Интерференция света
- •Условия интерференционного максимума и минимума
- •Тема 2. Дифракция света. Дифракция Френеля
- •Тема 3. Дифракция Фраунгофера
- •Тема 4. Дифракция рентгеновских лучей на кристаллах
- •Глава 5. Дисперсия и поляризация света
- •Тема 6. Корпускулярная оптика
- •Тема 7. Тепловое излучение
- •Тема 8. Квантовая физика атома. Постулаты Бора
- •По теории Бора полная энергия электрона на n-ой орбите атома водорода:
Тема 2. Дифракция света. Дифракция Френеля
Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или в более широком смысле – любое отклонение распространения волн вблизи препятствий от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшие отверстия в экранах и т. д.
Явление дифракции объясняется с помощью принципа Гюйгенса, согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта.
Ф
Рис.
3
Согласно принципу Гюйгенса – Френеля световая волна, возбуждаемая каким-либо источником S, может быть представлена как результат суперпозиции когерентных вторичных волн, «излучаемых» фиктивными источниками. Такими источниками могут служить, например, бесконечно малые элементы любой замкнутой поверхности, охватывающей источник S. Если в качестве такой замкнутой поверхности выбрать одну из волновых поверхностей (волновой поверхностью называется геометрическое место точек, колебания в которых происходят в одинаковой фазе), то все бесконечно малые элементы этой замкнутой поверхности, как фиктивные источники, действуют синфазно. Это свойство фиктивных источников когерентных вторичных волн использовано в методе зон Френеля при изучении дифракции сферических волн точечного источника света.
Метод зон Френеля. Найдем в произвольной точке М амплитуду световой волны, распространяющейся от точечного источника света S (рис. 2).
Рис. 2
Френель разбил волновую поверхность Ф, являющуюся сферической поверхностью с центром в точке S, на кольцевые зоны (зоны Френеля) такого размера, чтобы расстояния от краев соседних зон до точки М отличались на /2 (рис. 2). Так как колебания от соседних зон проходят до точки М расстояния, отличающиеся на /2, то в точку М они приходят в противоположных фазах и при наложении взаимно ослабляют друг друга. Поэтому амплитуда А результирующего колебания в точке М определяется следующим образом:
![]()
где А1, А2, ..., Аn – амплитуды колебаний, возбуждаемых 1-ой, 2-ой, ..., n-ной зонами Френеля.
С
ростом номера зоны Френеля интенсивность
излучения в направлении точки М
уменьшается, то есть
.
Амплитуда А результирующего колебания может быть представлена в виде:
![]()
так как выражения, стоящие в скобках, близки к нулю, а амплитуда An последней n-ной зоны Френеля ничтожно мала.
Таким образом, амплитуда результирующего колебания в произвольной точке М соответствует действию только половины центральной зоны Френеля.
Правомерность деления волнового фронта на зоны Френеля подтверждена экспериментально. Для этого использованы зонные пластинки – в простейшем случае стеклянные пластинки, состоящие из системы чередующихся прозрачных и непрозрачных концентрических колец, построенных по принципу расположения зон Френеля, то есть прозрачных для нечетных зон, начиная с центральной зоны Френеля, и непрозрачных для четных зон Френеля. В этом случае результирующая амплитуда А (A=A1+A3+A5+...) должна быть больше, чем при полностью открытом волновом фронте. Опыт подтверждает эти выводы: зонные пластинки увеличивают освещенность в точке М , действуя подобно собирающей линзе.
Д
ифракция
Френеля на круглом отверстии.
Сферическая волна, распространяющаяся
из точечного источника S,
встречает на своем пути экран с круглым
отверстием (рис. 3). Дифракционная
картина на экране Э
зависит от числа зон Френеля, открытых
круглым отверстием. После разбиения
открытой части волновой поверхности Ф
на зоны Френеля, необходимо определить
их
Рис. 3 число. Если для точки В, лежащей на линии, соединяющей источник S с центром отверстия (рис. 3), число открытых зон Френеля окажется четным, то в этой точке В будет наблюдаться темное пятно, так как колебания от каждой пары соседних зон Френеля взаимно гасят друг друга. Если же число открытых зон Френеля окажется нечетным, то в точке В будет наблюдаться светлое пятно. Причем для нечетного числа открытых зон Френеля амплитуда (интенсивность) в точке В будет больше, чем при свободном распространении волны.
Д
ифракция
Френеля на диске.
Сферическая волна, распространяющаяся
от точечного источника S,
встречает на своем пути диск (рис.4).
Пусть для точки В,
лежащей на линии, соединяющей источник
S
с центром диска, после разбиения волновой
поверхности Ф
на зоны
Френеля окажутся закрытыми диском m
первых зон Френеля. Тогда
амплитуда
Рис. 4 результирующего колебания в точке В равна:
т
Следовательно, в точке В будет наблюдаться светлое пятно, соответствующее действию половины первой открытой зоны Френеля.
