Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
64
Добавлен:
29.03.2016
Размер:
4.09 Mб
Скачать
Рис. 170. Оолиты пиролюзита с порош коватым родохрозитом в интерстициях (Чиатури, Грузия)

Раздел IV. Окислы (оксиды)

341

В НСl растворяется с выделени ем хлора. Это явление широко ис пользуется в химической промыш ленности. С бурой и фосфорной солью в окислительном пламени дает фиолетовое стекло; при восстановле нии оно становится бесцветным.

Происхождение и месторождеj ния. Сравнительно редко образуется в гидротермальных месторождениях марганца, и лишь при условии явно окислительной среды, зато широко

распространен на земной поверхности как высший природный окисел мар ганца в прибрежных фациях осадочных месторождений. Является наибо лее устойчивым окислом марганца в зоне окисления. В этих условиях в конце концов в него переходят все марганцевые минералы, содержащие марганец в низших степенях окисления. Поэтому нередки псевдоморфозы пиролюзита по манганиту, вернадиту, псиломелану, гаусманиту и др. Вслед ствие своей хрупкости в россыпях наблюдается крайне редко. Постоянно встречается во всех так называемых марганцевых шляпах, т. е. в зонах окис ления, а также в ряде осадочных месторождений.

На территории России известен в Сапальском (Ср. Урал), Полуночном (Сев. Урал) и Мозульском (Красноярский край) месторождениях. Из числа крупнейших в мире осадочных месторождений на территории ближнего за рубежья необходимо отметить Чиатурское (Грузия), в котором пиролюзит слагает оолитовые стяжения (рис. 170) и, кроме того, в виде скрытокристал лических мягких агрегатов образует псевдоморфозы по оолитам манганита (на выходах пластов на поверхность), Никопольское (Украина), где он иног да слагает более крупные шаровидные конкреции с концентрически зональ ным строением (обычно в псевдоморфозах по манганиту).

Из иностранных месторождений следует отметить зоны окисления метаморфизованных месторождений Индии, Золотого Берега (Западная Африка) и др. Хорошо образованные кристаллы были установлены в ме сторождении Платген (Чехия).

Практическое значение. Чисто пиролюзитовые руды используются для самых различных целей: 1) в производстве сухих электрических ба тарей; 2) в изготовлении для той же цели искусственно активированных продуктов; 3) в стекольном деле для обесцвечивания зеленого стекла; 4) при изготовлении химических препаратов, употребляемых в медици не и для других целей; 5) в производстве специальных противогазов для защиты от окиси углерода, катализаторов типа гопкалита для очистки от вредных примесей выхлопных газов автомобильных двигателей и пр.; 6) в технике при производстве олифы, масел, воска, в кожевенном деле

342

Описательная часть

при выделке хромовой кожи, в фотографии, в производстве красок и т. д. Для целей производства сухих батарей содержание двуокиси марганца в руде должно быть не ниже 80 %.

9. Группа перовскита

Перовскит (CaTiO3) по химической формуле вполне тождествен ра нее рассмотренному ильмениту, кристаллизующемуся в структуре, типич ной для корунда, но существенно отличается по кристаллической струк туре. Это обусловлено тем, что ион Са2+ обладает значительно большим радиусом, чем ионы Mg2+, Fe2+ и Мn2+.

Последнее обстоятельство отражается и на ассоциации элементов, входящих в минералы группы перовскита.

Прежде всего, в виде изоморфных аналогов Са в некоторых минера лах встречаются трехвалентные редкие земли: Се, La, а также Y, что впол не естественно (при условии замены Ca2+ на равновеликие ионы Na1+).

Затем, точно так же как и в группе рутила, Ti4+ частично или в значи тельной мере может заменяться Nb5+ или Та5+, но при условии, если об щий заряд всех катионов не будет нарушен, т. е. вместо Са2+ мы тогда долж ны иметь одновалентные катионы. Действительно, в этих случаях в виде изоморфной примеси к Са2+ появляется равновеликий ион Na1+. При этом кристаллическая структура соединения сохраняется. Например, луешит NaNbO3 обладает той же кристаллической структурой, что и перовскит; места Са2+ занимаются Na1+, а на местах Ti4+ располагаются ионы Nb5+. В небольших количествах в виде изоморфной примеси к Са иногда при сутствует U4+ и Th4+.

ПЕРОВСКИТ — CaTiO3. Назван так в честь графа Л. А. Перовского (1792—1856), минералога любителя.

Химический состав. CaO — 41,1 %, TiO2 — 58,9 %. В незначительных количествах в виде примеси присутствуют Fe (до 2 %), иногда Cr, Al, Nb (дизаналит) и TR (кнопит).

 

Сингония по внешним формам кубическая.

 

Однако оптически обычно анизотропен и харак

 

теризуется миметическим строением и двойнико

 

выми решетками на гранях, что свидетельствует о

 

его превращении в более низкотемпературную

 

ромбическую модификацию (из минералов груп

 

пы лишь таусонит SrTiO3 обладает кубической

 

симметрией). Кристаллическая структура, идеа

 

лизированная, изображена на рис. 171. В центре

 

куба располагается Са, по вершинам Ti и в сере

Рис. 171. Кристалли

динах ребер О. Титан при этом находится в окта

эдрической координации; связанные вершинами

ческая структура

перовскита

октаэдры [TiO6] образуют каркас состава TiO3,

Раздел IV. Окислы (оксиды)

343

отвечающий структуре синтетического ReO3, но заряженный отрицатель но. В кубооктаэдрических пустотах каркаса находятся компенсирующие его заряд катионы кальция. Как показал Н. В. Белов, в кристаллической структуре перовскита, построенного по принципу плотнейшей упаков ки, катионы кальция, будучи относительно крупными по своим разме рам, сами принимают участие в плотнейшей укладке анионов кислорода. При этом характерно, что в разрезе вдоль (001) ионы О2– и ионы Са2+ в шахматном порядке чередуются друг с другом, подобно тому как это мы имеем в структуре NaCl. В этом случае становится понятным, почему кристаллы перовскита обладают кубической формой и спайностью по кубу.

Облик кристаллов. Нередко встречающиеся кри сталлы, иногда довольно крупные, имеют кубический облик. На гранях куба наблюдаются штриховки па раллельно ребрам куба (рис. 172), являющиеся, по видимому, результатом двойникования при превраще

нии в ромбическую модификацию. Встречается также

Рис. 172. Кристалл

в почковидных образованиях, в которых различимы

мелкие кубики.

перовскита

 

Цвет перовскита серовато черный, красновато бурый, оранжево жел тый и светло желтый. Черта белая или серовато желтая. Блеск алмаз ный. N = 2,34.

Твердость 5,5–6. Спайность по кубу ясная до средней. Уд. вес 3,97–4,04. Диагностические признаки. Очень характерен кубический облик кри сталлов, грани которых покрыты перпендикулярно ориентированными короткими штрихами (параллельно ребрам). От других похожих на него по цвету и твердости минералов отличается по очень слабо окрашенной

или белой черте.

П. п. тр. не плавится. Разлагается только кипящей H2SO4 или после сплавления с KHSO4.

Происхождение и месторождения. Крупных скоплений перовскит обычно не образует. В виде вкраплений он встречается в некоторых ще лочных базальтах (мелилитовых, лейцитовых и др.), иногда в титаномаг нетитовых и хромитовых месторождениях. Хромсодержащий перовскит встречен в Сарановском хромитовом месторождении (Урал). Лучшие на ходки кристаллов перовскита были сделаны в оригинальных по происхож дению (в связи с основными изверженными породами) контактово метасо матических месторождениях Назямских и Шишимских гор в Златоустовском районе (Урал) — в известных Ахматовской, Николае'Максимилиановской,

Мельниковской и других копях, весьма интересных по парагенетическим группировкам минералов: эпидот, клинохлор, магнетит, хондродит, Ti клиногумит, хёгбомит и др. Особенно крупные кристаллы перовскита встречались в Мельниковской копи в виде метакристаллов в хлоритовых

344

Описательная часть

сланцах и мраморизованных известняках. Они образовались также в по лых трещинах в ассоциации с кристаллами хлорита, магнетита, титани та, гранатов и других минералов. С магнетитом, титанитом, кальцитом и эгирин диопсидом крупные октаэдрические кристаллы перовскита нахо дятся в клинопироксенитах щелочно ультраосновного массива Африкан' да (Кольский полуостров). Обогащенный ниобием перовскит (дизана лит) встречен в карбонатитовых жилах на горе Моговид близ Ковдора (запад Кольского полуострова). Присутствует в карбонатитах Тажеранс' кого щелочно ультраосновного комплекса (Прибайкалье). Перовскит рас пространен и в ряде иностранных месторождений, из которых упомянем месторождения долины Церматт (Швейцария).

Самостоятельного практического значения не имеет, кроме ниобий содержащего дизаналита.

ЛОПАРИТ — (Na,Ce,Ca)(Ti,Nb)O3. Впервые описан И. Г. Кузнецовым на Кольском полуострове и назван в честь русского наименования ко ренного населения полуострова — «лопари».

Химический состав непостоянный. Согласно имеющимся анализам, содержит (в %) TiO2 — 39,2–40, TR2O3 — 32–34, (Nb,Ta)2O5 — 8–10, CaO — 4,2–5,2, Na2O — 7,8–9,0, SrO — 2,0–3,4, К2О—0,2–0,7,UO2 в сотых долях, TiO2 — 0,2–0,5, SiO2 0,2–0,7, а в измененных разностях, кроме того, Н2О — до 3,5 %.

Сингония кубическая (вероят но, ромбический псевдокубиче ский); гексаоктаэдрический в. с. 3L44L366L29PC. Кристаллическая структура подобна структуре пе ровскита. Обликкристаллов. Лопа рит встречается преимущественно в виде кубических кристаллов,

Рис. 173. Кристаллы лопарита иногда притупленных гранями {111} (рис. 173), обычно очень мел ких (1–2 мм, изредка достигающих 1,5 см в поперечнике). Эти кристал лы почти всегда сдвойникованы по флюоритовому закону (рис. 174).

Цвет лопарита черный или се

Рис. 174. Двойники лопарита

ровато черный. Черта коричнево

бурая. Блеск полуметаллический. В тонких шлифах просвечивает буровато красным цветом. N = 2,24. Наблюдаются оптические аномалии.

Твердость 5,5–6. Спайность отсутствует. Излом неровный. Уд. вес 4,75–4,89.

Диагностические признаки. Кроме цвета, черты и твердости весьма характерны двойники прорастания по флюоритовому закону, слабая ра диоактивность.

Раздел IV. Окислы (оксиды)

345

П.п. тр. не плавится. Порошок лопарита с содой на угле сплавляется

струдом. Раствор сплава в НСl при кипячении с оловом окрашивается в фиолетовый цвет (реакция восстановления титана); затем появляется го лубая окраска (реакция на ниобий). В присутствии олова перл фосфор ной соли в восстановительном пламени имеет желтый цвет; по охлажде нии окрашивается в фиолетовый цвет (реакция на титан). В кислотах не

растворяется. Разлагается вполне HF. Легко сплавляется с KHSO4.

Происхождение и месторождения. Лопарит известен как второсте пенный минерал щелочных магматических пород. Он встречается также во многих пегматитовых жилах, связанных с щелочными породами в виде сконцентрированных вкраплений или включений мелких кристалликов

вполевых шпатах, эвдиалите (силикат натрия и циркония сложного со става) и других минералах. В парагенезисе с ним обычно встречаются полевые шпаты (микроклин, альбит), нефелин, эгирин, эвдиалит, тита нит и некоторые другие минералы. Кристаллы лопарита, особенно круп ные, часто содержат включения окружающих минералов; они развились метасоматическим путем, т. е. являются метакристаллами.

В виде более или менее равномерно рассеянных кристалликов он распро странен в малиньитах темных мелкозернистых обогащенных эгирином

(NaFe[Si2O6])икалишпатомнефелиновыхсиенитахЛовозерских тундр (Коль ский полуостров); здесь малиньиты слагают значительные по площади гори зонты и даже при малой мощности обеспечивают запасы Nb на многие годы вперед. Известен и в щелочных сиенитах массива Коргередаба (Тува).

Практическое значение. Лопарит представляет интерес как источник ниобия, редких земель, тантала, титана и других элементов. Ниобий в виде феррониобия в последнее время приобрел большое значение в металлургии качественных сталей и в изготовлении жароупорных сплавов с алюминием, никелем и другими металлами. Добавка феррониобия к сталям придает им ряд замечательных свойств: 1) предохраняет их от воздушной закалки; 2) повышает упругость и гибкость; 3) значительно улучшает сварочные свой ства, придает свойства жароупорности, кислотоупорности и пр. Из ниобие вых (так же как и из танталовых) сплавов важное значение получили сверх твердые сплавы высокого качества для изготовления буров, сверл, пилок, применяемых при резке твердых сталей, а также в производстве часовых пружин. Кроме того, ниобий и тантал употребляются для изготовления ни тей в специальных электрических лампах. Тантал применяется также в элек тронике при изготовлении мощных радиоламп, как заменитель платины, иридия и др. О применении редких земель см. монацит.

10. Группа пирохлора

Здесь объединены минералы, хотя и близкие по химическому соста ву к группе перовскита, но отличающиеся по химическим формулам, в частности по наличию дополнительных анионов. Из многочисленных

346

Описательная часть

представителей этой группы опишем пирохлор и микролит и, кроме того, здесь же опишем эшинит и самарскит.

ПИРОХЛОР — (Na,Ca...)2(Nb,Ti...)2O6[F,OH,O], МИКРОЛИТ — (Na,Ca...)2(Ta, Nb, Ta, Ti...)2O6[F,OH]. Название образовано от греч. пирос — огонь, хлорос — зеленый (некоторые разновидности перед паяльной труб кой становятся желтовато зелеными).

Разновидности, обогащенные ураном и торием и находящиеся в ме тамиктном состоянии, содержат значительные количества Н2О (7–14 %), лишены щелочей и несколько обеднены окисью кальция, при этом титан в своей позиции обычно доминирует (этому случаю соответствует мине ральный вид бетафит). В метамиктных разностях сохраняются внешние кубические или октаэдрические формы кристаллов, иногда с кривоплос костными гранями, как бы оплавленными.

Химический состав очень непостоянный. Содержания отдельных ком понентов вообще для изоморфного ряда пирохлор — микролит колеблют ся (в %) в следующих пределах:

Nb2O5 … 63–0;

Na2O … 1–6;

(Ce,La)2O3 … 2–13,3;

Ta2О5 … 0–77;

K2O … 0–1,4;

(Y, Er)2O3 … 0–5,1;

TiO2 … 2–13,5;

CaO … 4–18,1;

SnO2 … 0–4,0;

ThO2 … 0–5;

MnO … 0–7,7;

ZrO2 … 0–5,7;

UO2

… 0–11,4;

FeO … 0–10;

WO3 … 0–0,3;

UO3

… 0–15,5;

Fe2O3 … 0–9,7;

H2O … 0–6,0.

Кроме того, иногда присутствуют: Sb2O5, MgO, PbО (очевидно, как продукт радиоактивного распада), HfO2, SiO2, Al2O3, SrO, BeO, CuO, Bi2O3, GeO2 и др.

Как видим, главные изменения в химическом составе этих минералов выражаются в колебании содержаний Nb2O5 и Та2О5. Выделяется боль шое число редких минеральных видов по доминирующим атомам во вне каркасной позиции, таким как Ba, Sr и Pb.

Сингония кубическая; гексаоктаэдрический в. с. 3L44L366L29PC. Пр. гр. Fd3m(О7h). a0 = 10,35. Кристаллическая структура. Образцы, не подверг шиеся метамиктному распаду (бедные радиоактивными элементами), обладают кубической кристаллической структурой, основанной на дефектной, слегка искаженной кубической упаковке. Отсутствие части анионов придает структуре черты каркасной постройки. Редкие металлы и титан располагаются в вершинно связанных октаэдрах, тогда как ще лочные и щелочноземельные металлы сосредоточены в крупных полос тях, используя вакансии в анионной упаковке. Облик кристаллов окта эдрический (рис. 175). Кристаллы иногда достигают 5 см в поперечнике. Нередко октаэдрические кристаллы притуплены гранями куба. Встреча ется также в сплошных массах и иногда в колломорфных выделениях.

Рис. 175.
Кристалл
пирохлора

Раздел IV. Окислы (оксиды)

347

Наблюдались закономерные сростки с цирконом по плос костям (111), причем грань октаэдра пирохлора совпада ет с гранью тетрагональной дипирамиды {111} циркона.

Цвет пирохлора темно бурый, красновато бурый, жел товато зеленый, изредка буровато черный; по мере пере хода к микролиту светлеет, становясь постепенно блед но оранжевым, желтым до лимонно желтого (микролит), бетафит обычно темно бурый, черный. С поверхности вследствие изменения иногда образуются светло желтые

каемки (превращение в оптически анизотропный минерал, ближе не изу ченный). Черта желтовато белая до светло бурой или красновато жел той. Блеск алмазный, жирный или смолистый (у метамиктных разностей). Полупрозрачен или просвечивает. N = 2,13–2,27 (у метамиктных разно стей снижается до 1,96). Твердость 5–5,5. Хрупок. Спайность практиче ски отсутствует. Уд. вес 4,03–4,36. Танталовые разности обладают боль шим удельным весом (до 4,9). Прочие свойства. Иногда обладает сильной радиоактивностью. Измененные разности при нагревании дают вспыш ку (при температуре около 500 °С).

Диагностические признаки. Характерны октаэдрический облик кри сталлов, цвет, жирный алмазный блеск, раковистый излом. Характерна также связь со щелочными изверженными породами (нефелиновыми сиенитами и сиенитовыми пегматитами). Очень похож на циркон, с ко торым иногда находится в срастании, и на шеелит, от которого отличает ся по твердости и отсутствию спайности.

П. п. тр. с большим трудом сплавляется в черновато бурый шарик. Некоторые разности при нагревании становятся желтовато зелеными. С бурой дает стекло красновато желтое в окислительном пламени и тем но красное в восстановительном. В крепкой H2SO4 и HF разлагается.

Происхождение и месторождения. Встречается в пегматитах нефе линовых сиенитов в ассоциации с полевыми шпатами, главным образом альбитом, иногда с цирконом, эгирином, амфиболом, биотитом, апати том, ильменитом, сфеном, кальцитом и другими минералами, образу ющимися в более позднюю флюидно гидротермальную стадию пегмати тообразования (месторождения Вишневых гор, Ю. Урал). Нередко наблюдается характерное окрашивание тесно срастающегося с ним аль бита в коричневато желтый цвет. Пирохлор характерен также для карбо натитовых массивов: например, Белая Зима (Восточный Саян) и Татар' ка (Енисейский кряж), где встречается с кальцитом, флогопитом, фторидо карбонатами TR — бастнезитом и паризитом. Микролит в виде мелких кристаллов известен в гранитных пегматитах Мурзинки (Ю. Урал), где нарастает одним из последних на альбит и лепидолит. Стронциопи рохлор в виде псевдоморфоз по лопариту обнаружен в альбитизирован ном пегматите нефелиновых сиенитов с цирконом и Mn ильменитах

348

Описательная часть

в Ловозерских тундрах. В редкометалльно амазонитовых пегматитах горы Плоская (гряда Кейвы, Кольский полуостров) встречаются кубооктаэд ры плюмбомикролита до 5 см в ребре. Бетафит отмечен в Пичехоле (наго рье Сангилен, Тува) в щелочных пегматитах с мозандритом, лопаритом, торитом и бастнезитом. В виде темно бурых до черных октаэдров бета фит наблюдался с астрофиллитом, галенитом и и полилитионитом в гра нулированном кварце осевых зон щелочно гранитных пегматитов мас сива Дараи'Пиоз (Алайский хребет, Таджикистан).

Установлены позднейшие превращения пирохлора во вторичный про дукт в виде псевдоморфоз по октаэдрическим кристаллам пирохлора. Характерно, что эти псевдоморфозы иногда имеют трещины вспучива ния и сами кристаллы при этом обладают несколько искаженным окта эдрическим обликом. Этот вновь образующийся минерал оптически изо тропен. Цвет светло желтый. N около 2,1.

Как новообразование пирохлор иногда наблюдается в агрегате иль менита, возникающего, очевидно, при эндогенном разложении ильмено рутила — (Ti,Fe,Nb)O2.

Из зарубежных месторождений назовем лишь очень крупное по запа сам: Тапира (штат Серра да Канастра, Бразилия).

Практическое значение. В случае значительных по размерам и запа сам месторождений представляет промышленный интерес как сырье ни обия, тантала и урана. О применении ниобия см. лопарит.

ГРУППА ЭШИНИТА — (TR,Ca,Th,Fe...)(Nb,Ta,Ti)2O6. Название дано И. Я. Берцелиусом от греч. эсхине — стыд (при проведении химического анализа не удалось разделить содержащиеся в этом минерале компонен ты). По составу эшиниты являются титано тантало ниобатами редких земель и кальция.

Группа содержит восемь минеральных видов, выделяемых по преоб ладающим элементам в первой и второй позициях. В титандоминантных видах по преобладающему редкоземельному элементу различаются эши' нит (Ce), эшинит (Nd) и эшинит (Y), ранее известный под названием «приорит». Существуют два Nb доминантных редкоземельных вида: ни' обоэшинит (Ce) и ниобоэшинит (Nd). Известны два вида с преобладани ем Ca в первой позиции и различным заполнением второй: виджеццит (Ca,TR..)(Nb,Ta)2O6 и ринерсонит (Ca,TR...)(Ta,Nb)2O6; редкоземельным аналогом последнего служит танталэшинит (Y).

Между перечисленными видами по большей части наблюдается со вершенный изоморфизм.

Сингония ромбическая. Структура ленточно координационная субкар касная. Кислородные октаэдры с Ta, Nb связаны в вытянутые вдоль оси с цепочки через общие вершины, пары таких цепочек через общие горизон тальные ребра связаны в ленты, которые имеют общие вершины с другими лентами. В межленточных трубообразных полостях располагаются катио

Раздел IV. Окислы (оксиды)

349

ны редких земель. Кристаллы уплощенно призматиче

 

ские, иногда в длину достигают 12 см (рис. 176). Цвет

 

черный, коричнево бурый. Черта темно бурая до корич

 

невой. Блеск алмазный, жирный. Разности, подвергши

 

еся метамиктному распаду, изотропны. N = 2,26.

 

Твердость 5–6. Излом раковистый. Уд. вес 5,16–

 

5,23. П. п. тр. не плавится, но вспучивается. В кислотах,

 

кроме HF, не растворяется.

 

Минералы группы эшинита встречаются в пегмати

 

тах нефелиновых сиенитов в ассоциации с нефелином,

 

полевыми шпатами, биотитом, мусковитом, магнети

 

том, цирконом и другими минералами, а также в карбо

Рис. 176. Крис

натитах. Эшинит (Ce) и эшинит (Y) установлены в

талл эшинита

копях Ильменского заповедника, ниобоэшинит (Ce) —

 

в Вишневых горах (Ю. Урал), а также в Хиттерё (Ю. Норвегия) и в дру гих местах. Эшинит (Y) известен в Абчаде (Прибайкалье), а ниобоэши нит (Nd) в проявлении Бирая (Патомское нагорье).

САМАРСКИТ — (Y,Er,Fe,U...)4[[Nb,Ta)2O7]3. Сингония ромбическая. Назван по фамилии начальника штаба Корпуса горных инженеров В. Е. Са марского (1803—1870). Химический состав весьма сложен. Содержания главных компонентов колеблются в следующих пределах (в %):

Y2O3 … 6,41–14,49;

Nb2О5 … 27,77–46,44;

ThО2 … 0–4,23;

Er2O3 … 2,72–13,37;

Ta2O5 … 1,81–27,03;

UO2 … 4,02–16,0;

Ce2O3 … 0,25–3,82;

TiO2 … 0–1,42;

PbO … 0–0,98;

La2O3 … 0,37–1,07;

ZrO2 … 0–2,29;

CaO … 0,2–3,79;

(Pr, Nd)2O3 … 0,74–4,17;

SnO2 … 0–0,95;

FeO … 0–11,15.

Встречается в призматических, иногда пластинчатых кристаллах с тусклыми гранями (рис. 177). Из граней наиболее часты пинакоиды {100}, {010} и призма {101}. Наблюдаются и неправильной фор мы зерна, иногда сплошные массы. Интересны закономер ные срастания с колумбитом (рис. 178). Известны случаи обрастания кристаллов колумбита самарскитом со всех сторон тонким слоем, причем получаются кристаллы с ка жущимся внешним обликом колумбита.

Цвет бархатно черный, буровато черный. Черта тем

 

ная красновато бурая до черной. Характерен сильный

 

смоляновидный блеск. Почти непрозрачен. В тонких

 

шлифах просвечивает коричневым цветом. N = 2,21–2,25,

 

(для разностей в метамиктном состоянии). Иногда наблю

 

дается сильное двупреломление. Твердость 5–6. Излом

Рис. 177. Крис

раковистый. Уд. вес 5,6–5,8. Сильно радиоактивен.

талл самарскита

Рис. 178. Ориентиро ванное срастание самарскита с колумби том. Увеличено
(по Д. П. Григорьеву)

350

Описательная часть

Из диагностических признаков для самарски та характерны бархатно черный цвет матовых гра ней кристаллов, раковистый излом с сильным смо ляным блеском.

П. п. тр. слегка оплавляется по краям в черное стекло. В закрытой трубке растрескивается и само раскаляется. С фосфорной солью дает изумрудно зеленое стекло как в окислительном, так и в вос становительном пламени. Сплавляется с KHSO4. Солянокислый же раствор при кипячении с оло вом или цинком окрашивается в голубой цвет (ре акция на ниобий).

Встречается в сиенит пегматитовых жилах Ильменского заповедника на Урале в ассоциации с полевыми шпатами, окрашенными около него в красновато бурый цвет (результат воздействия

продуктов радиоактивного распада элементов самарскита), а также с ко лумбитом, эшинитом, корундом, монацитом, гранатами, турмалином и другими минералами. Из иностранных можно упомянуть о месторожде ниях Сев. Каролины (с колумбитом) и Мэриленда (США), на о. Мада гаскар (Антанамалаза), около Мосса (Норвегия).

11. Группа уранинита

Сюда относятся двуокиси четырехвалентных металлов: U, Th и Zr — уранинит (UO2), торианит (ThO2) и бадделеит (ZrO2). Здесь опишем лишь уранинит.

УРАНИНИТ — UO2. Название дано по составу. Является важнейшим источником урана и радия.

Химический состав встречающихся кристаллов не отвечает написан ной формуле1; он является промежуточным между UO2 и UO3 и может достигать U3O8. Наличие в составе уранинита U+6, вероятно, обязано про цессу окисления. Содержит Ra, Ас, Po и другие продукты радиоактив ных превращений. Как конечный продукт радиоактивного распада U и Th в уранинитах всегда присутствует радиогенный Pb (изотопы Pb206, Pb207 и Pb 208). Содержание его нередко достигает 10–20 %. Однако в урановых рудах часто устанавливается и обычный свинец (за счет включений гале нита), содержащий, кроме указанных изотопов, также изотоп Pb204 в по стоянном количестве (около 10 %) по отношению к другим изотопам. Некоторые разности уранинита, носящие специальные названия клевеи

1 Напомним из химии, что уран с кислородом дает следующие соединения: UO2 — закись урана, называемую также двуокисью черного цвета, и UO3— аморфную трехокись урана желтого цвета.

Соседние файлы в папке Бетехтин